Toggle light / dark theme

In a new paper published in Science, researchers at the Harvard and Raytheon BBN Technology have observed, for the first time, electrons in a metal behaving like a fluid (credit: Peter Allen/Harvard SEAS)

A radical discovery by researchers at Harvard and Raytheon BBN Technology about graphene’s hidden properties could lead to a model system to explore exotic phenomena like black holes and high-energy plasmas, as well as novel thermoelectric devices.

In a paper published Feb. 11 in Science, the researchers document their discovery of electrons in graphene behaving like a fluid. To make this observation, the team improved methods to create ultra-clean graphene and developed a new way to measure its thermal conductivity.

Read more

Researchers have used graphene to create a lens that’s so flat, it’s 300 times thinner than a sheet of paper and weighs just 1 microgram. That means it’s small enough to split a beam of single photons — something that’s going to be crucial if we ever want to develop optical computers that process data at the speed of light.

These optical computers require devices called photonic chips, which store information as photons rather than electrons, and allow that information to move at light speed — and people are pretty excited about it. NASA is already using it, and the technology is getting more and more impressive. But there are still some limitations, and one of those is having lenses thin enough to split beams of light and divert them around the chip.

Attempts to make these lenses in the past have required expensive and impractical materials such as gold, but researchers at Swinburne University of Technology in Australia have been working on a solution, and they’ve managed to produce a lens using graphene oxide that’s not only thin enough to overcome the diffraction limit, but is also cheap, strong, flexible, and easy to produce.

Read more

Liquid metal.


Abstract: Graphene is going to change the world — or so we’ve been told.

Since its discovery a decade ago, scientists and tech gurus have hailed graphene as the wonder material that could replace silicon in electronics, increase the efficiency of batteries, the durability and conductivity of touch screens and pave the way for cheap thermal electric energy, among many other things.

Read more

Graphene is going to change the world — or so we’ve been told.

Since its discovery a decade ago, scientists and tech gurus have hailed graphene as the wonder material that could replace silicon in electronics, increase the efficiency of batteries, the durability and conductivity of touch screens and pave the way for cheap thermal electric energy, among many other things.

It’s one atom thick, stronger than steel, harder than diamond and one of the most conductive materials on earth.

Read more

When the idea of a medical transplant is brought up, most people’s thoughts are usually drawn to procedures such as blood transfusions or organ replacements. But, oftentimes, we forget the importance of our bone structure, as well as the 2 million painful bone transplants that take place every year around world. Previously stuck in a Medieval-like operation method, surgeons had little option but to replace their patients’ bones with the bones of animals or human cadavers, and even this procedure can oftentimes led to complications due to the body’s rejection of the foreign replacement. But 3D bioprinting has been a major influence in changing the entire nature of this traditional surgical procedure, new methods of creating bone grafts have been developed by researchers around the world from Montana State University to Tokyo. 3D printing has become a recent revelation in skeletal reconstruction surgery, with 3D printed synthetic implants and even harvested stem cell materials proving to be a much safer and efficient surgical alternative.

Read more

Researchers at the school of physics and astronomy at Tel Aviv University have created a track around which a superconductor (a material that is extremely efficient at transmitting electricity) can float, thanks to the phenomenon of “quantum levitation “.

This levitation effect is explained by the Meissner effect, which describes how, when a material makes the transition from its normal to its superconducting state, it actively excludes magnetic fields from its interior, leaving only a thin layer on its surface.

When a material is in its superconducting state — which involves very low temperatures — it is strongly diamagnetic. This means that when a magnetic field is externally applied, it will create an equally opposing magnetic field, locking it in place.

A material called yttrium barium copper oxide can be turned into a superconductor by exposure to liquid nitrogen — which makes it one of the highest-temperature superconductors.

Levitation isn’t just for Houdini anymore. Could this cool new tech lead to floating alternatives to traditional gas powered vehicles? Interesting times ahead!

Read more

Another step forward for Quantum — The Quantum Current. US Dept. of Energy has a new method to generate very low-resistance electric (Quantum) current which will improve our methods for energy, quantum computing, and medical imaging, and possibly even a new mechanism for inducing superconductivity—the ability of some materials (zirconium pentatelluride) to carry current with no energy loss.

Read more

We all have “Quantum Spark”.


For centuries philosophers have grappled with the question of what makes life, and thanks to the science of quantum mechanics we might just have the answer, writes Johnjoe McFadden.

What is life? Why is the stuff of life — flesh — so different from inanimate material? Does life obey the same laws as the inanimate world? And what happens when we die?

These questions have been pondered by philosophers, scientists and the rest of us for centuries. For most of human history the answer was that life was special. It was animated by some kind of spirit, soul or qui, a vital spark that was absent from the non-living. But, by the end of the 19th century, this theory, known as vitalism, was pretty much discredited by the discovery that living organisms are made from the same chemicals as the inanimate world — atoms and molecules of carbon, nitrogen, oxygen and so on.