Toggle light / dark theme

3D Printed Graphene Aerogel Enhances Supercapacitor Ability

Researchers are using 3D printing to develop electrodes with the highest electric charge store per unit of surface area ever reported for a supercapacitor.

A research collaboration from the University of California Santa Cruz and the U.S. Department of Energy’s Lawrence Livermore National Laboratory have 3D printed a graphene aerogel that enabled them to develop a porous three-dimensional scaffold loaded with manganese oxide that yields better supercapacitor electrodes. The recently published their findings in Joule. Yat Li, a professor of chemistry and biochemistry at UC Santa Cruz, explained the breakthrough in an interview with R&D Magazine.

“So what we’re trying to address in this paper is really the loading of the materials and the amount of energy we can store,” Li said. “What we are trying to do is use a printing method to print where we can control the thickness and volume.

3D Printed Graphene Aerogel Offers Highest-Ever Capacitance for a Supercapacitor

After what has seemed a bit of a lapse in the timeline of their development, graphene-enabled supercapacitors may be poised to make a significant advance. Researchers at the University of California, Santa Cruz, and Lawrence Livermore Laboratory (LLNL) have developed an electrode for supercapacitors made from a graphene-based aerogel. The new supercapacitor component has the highest areal capacitance (electric charge stored per unit of surface area) ever reported for a supercapacitor.

The 3D-printing technique they leveraged to make the graphene electrode may have finally addressed the trade-offs between the gravimetric (weight), areal (surface area), and volumetric (total volume) capacitance of supercapacitor electrodes that were previously thought to be unavoidable.

In previous uses of pure graphene aerogel electrodes with high surface area, volumetric capacitance always suffered. This issue has typically been exacerbated with 3D-printed graphene aerogel electrodes; volumetric capacitance was reduced even further because of the periodic large pores between the printed filaments.

World’s first graphene paint launches in the UK

Miracle material graphene – considered the strongest substance known to science – has been used to make eco-friendly paint by manufacturer Graphenstone.

The paint is made from a pure lime base that has been combined with graphene – a recently engineered material hailed as the thinnest, strongest and most conductive ever developed.

It will be distributed in the UK through The Graphene Company, which claims Graphenstone is the most environmentally friendly paint in the world.

MIT’s self-healing metal fixes tiny flaws before they can create massive problems

Circa 2013


When a material is damaged, you wouldn’t expect pulling it apart to suddenly make it less damaged. This counterintuitive effect is exactly what researchers at MIT observed in an experimental model recently, and it was so unexpected that the results had to be rechecked before anyone was ready to believe it. Astonishingly, it seems that under the right conditions, metal with small flaws and cracks can heal itself when tension is applied — if you pull it apart, it puts itself back together.

Researchers led by graduate student Guoqiang Xu and professor Michael Demkowicz modeled microscopic cracks in a sheet of nickel with tension applied. Instead of worsening, the cracks became smaller, then closed on their own as the edges fused together. After assuring themselves the effect was real, the next step was figuring out how it happens.

The answer has to do with the basic structure of metals, most of which are composed of microscopic crystalline grains of varying sizes and shapes. The orientation and size of these grains affects the overall mechanical strength and other characteristics of the material. Nickel is of particular interest because it is a basis for many so-called superalloys used in harsh environments like jet turbines, deep-sea oil rigs, and joints in heavy industrial equipment. It turns out that the grains making these materials so strong are not as static as scientists thought.