Toggle light / dark theme

Electronics-free robots can walk right off the 3D-printer

Imagine a robot that can walk, without electronics, and only with the addition of a cartridge of compressed gas, right off the 3D-printer. It can also be printed in one go, from one material.

That is exactly what roboticists have achieved in robots developed by the Bioinspired Robotics Laboratory at the University of California San Diego. They describe their work in an advanced online publication in the journal Advanced Intelligent Systems.

To achieve this feat, researchers aimed to use the simplest technology available: a desktop 3D-printer and an off-the-shelf printing material. This design approach is not only robust, it is also cheap—each robot costs about $20 to manufacture.

‘Half ice, half fire’: Physicists discover new phase of matter in a magnetic material

Two scientists at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory have discovered a new phase of matter while studying a model system of a magnetic material.

The phase is a never-before-seen pattern of electron spins—the tiny “up” and “down” magnetic moments carried by every electron. It consists of a combination of highly ordered “cold” spins and highly disordered “hot” spins, and it has thus been dubbed “half ice, half fire.” The researchers discovered the new phase while studying a one-dimensional model of a type of magnetic material called a ferrimagnet.

“Half ice, half fire” is notable not only because it has never been observed before, but also because it is able to drive extremely sharp switching between phases in the material at a reasonable, finite temperature. This phenomenon could one day result in applications in the energy and information technology industries.

50 Years Later, Scientists Just Found a Quantum “Butterfly” Hiding in Graphene

Physicists at Princeton stumbled upon a mysterious quantum pattern hidden in twisted graphene — something theorized nearly 50 years ago but never seen before. What they found wasn’t part of the plan… and it looks like a butterfly.

Cutting-edge experiments reveal ‘hidden’ details in transforming material with implications for faster microelectronics

Phase changes are central to the world around us. Probably the most familiar example is when ice melts into water or water boils into steam, but phase changes also underlie heating systems and even digital memory, such as that used in smartphones.

Triggered by or electricity, some materials can switch between two different phases that represent binary code 0s and 1s to store information. Understanding how a material transforms from one state or phase to another is key to tailoring materials with specific properties that could, for instance, increase switching speed or operate at lower energy costs.

Yet researchers have never been able to directly visualize how these transformations unfold in real time. We often assume materials are perfect and look the same everywhere, but “part of the challenge is that these processes are often heterogeneous, where different parts of the material change in different ways, and involve many different length scales and timescales,” said Aaron Lindenberg, co-author and SLAC and Stanford University professor.

Hofstadter’s Butterfly Lands at Last — A 50-Year Quantum Mystery Solved

Scientists at Princeton University have made a groundbreaking discovery in quantum materials, revealing that electron energy levels in certain systems follow a fractal pattern known as Hofstadter’s butterfly. This phenomenon was first theorized in 1976 but had never been directly observed in a re

Producing nuclear fusion fuel is banned in the US for being too toxic: Researchers find an alternative

Lithium-6 is essential for producing nuclear fusion fuel, but isolating it from the much more common isotope, lithium-7, usually requires liquid mercury, which is extremely toxic. Now, researchers have developed a mercury-free method to isolate lithium-6 that is as effective as the conventional method. The new method is presented in the journal Chem.

“This is a step towards addressing a major roadblock to nuclear energy,” says chemist and senior author Sarbajit Banerjee of ETH Zürich and Texas A&M University. “Lithium-6 is a critical material for the renaissance of nuclear energy, and this method could represent a viable approach to isotope separation.”

The conventional method used to isolate lithium-6, called the COLEX process, involves liquid mercury and has been banned in the United States since 1963 due to pollution concerns.

A Tiny Twist Sparks a Quantum Revolution in Superconductors

Scientists have discovered a revolutionary way to control superconductivity by twisting ultra-thin layers of a superconducting material. This method allows precise tuning of the superconducting gap, a crucial factor for making quantum devices more efficient. Unlike previous approaches that focuse