Blog

Archive for the ‘materials’ category: Page 253

Mar 31, 2018

This Ultra-Thin Material Can Stop Bullets

Posted by in categories: entertainment, materials

Researchers use the world’s strongest material to create a film that can harden like a diamond upon impact.

Read more

Mar 30, 2018

The Wild New Materials of the Future Will Be Discovered With AI

Posted by in categories: materials, robotics/AI

Materials science is sometimes serendipitous but more often painstaking. The latest machine learning tools are offering scientists a way to significantly accelerate the process of discovery with AI.

Read more

Mar 30, 2018

A Material World – Building a Future from the Atoms Up: Rob Moore Public Lecture

Posted by in categories: materials, particle physics

Wednesday Apr. 4, 2018 at 7 PM ET

The live webcast will appear on this page.

Continue reading “A Material World – Building a Future from the Atoms Up: Rob Moore Public Lecture” »

Mar 27, 2018

Rare Type of Supernova Extinguishes Star at Unprecedented Speed

Posted by in categories: cosmology, materials

Supernovae produce some of the most powerful explosions in the cosmos, expelling a doomed star’s contents at velocities reaching 10 percent the speed of light. It usually takes a few weeks or months for a supernova to fade into nothingness, but astronomers have now documented a record-setting case in which a star was extinguished in just a few days.

They’re called Fast-Evolving Luminous Transients (FELTs), an exotic type of supernova discovered only a few years ago. As the name implies, these supernovae develop quickly, they’re very bright, and then they disappear. Unlike more “conventional” supernovae, such as Type Ia supernovae, the duration of these explosions can be measured in days rather than weeks or months. These celestial events are rare, and only a handful of FELTs have ever been documented.

The perplexing thing about FELTs, however, isn’t so much that they’re short lived—it’s that they’re also very bright. Scientists have subsequently theorized that they’re the glowing remnant of a gamma-ray burst (a massive explosion produced by a collapsing star that gives birth to a black hole), a supernova fueled by a magnetar (a neutron star with a powerful magnetic field), or a failed Type Ia supernova (in which a white dwarf star sucks up material from a nearby star, eventually causing it to explode). New research published today in Nature Astronomy suggests it’s none of the above.

Continue reading “Rare Type of Supernova Extinguishes Star at Unprecedented Speed” »

Mar 22, 2018

ESA proves new technologies to power future launchers

Posted by in categories: futurism, materials

A full-scale demonstrator of the thrust chamber for an upper-stage rocket engine incorporating the newest propulsion technologies is being prepared for its first hot firing.

The Expander-cycle Technology Integrated Demonstrator, or ETID, has arrived at the DLR German Aerospace Center test facility in Lampoldshausen for tests. It will help to prove new technologies, materials and manufacturing techniques that offer higher performance at lower cost for Europe’s future launchers.

ETID is a precursor of the next generation of 10-tonne rocket engines. Some of the technologies could also be used on upgrades to the existing Vinci, which powers the upper stage of Ariane 6.

Continue reading “ESA proves new technologies to power future launchers” »

Mar 18, 2018

Piezomagnetic material changes magnetic properties when stretched

Posted by in categories: materials, physics

Piezoelectric materials, which generate an electric current when compressed or stretched, are familiar and widely used: think of lighters that spark when you press a switch, but also microphones, sensors, motors and all kinds of other devices. Now a group of physicists has found a material with a similar property, but for magnetism. This “piezomagnetic” material changes its magnetic properties when put under mechanical strain.

“Piezomagnetic materials are rarely found in nature, as far as I’m aware,” said Nicholas Curro, professor of physics at UC Davis and senior author of a paper on the discovery published March 13 in the journal Nature Communications.

Curro and colleagues were studying a barium-iron-arsenic compound, BaFe2As2, that can act as a superconductor at temperatures of about 25 Kelvin when doped with small amounts of other elements. This type of iron-based superconductor is interesting because although it has to be kept pretty cold to work, it could be stretched into wires or cables.

Continue reading “Piezomagnetic material changes magnetic properties when stretched” »

Mar 14, 2018

A new test could tell us whether an AI has common sense

Posted by in categories: materials, robotics/AI

Virtual assistants and chatbots don’t have a lot of common sense. It’s because these types of machine learning rely on specific situations they have encountered before, rather than using broader knowledge to answer a question. However, researchers at the Allen Institute for AI (Ai2) have devised a new test, the Arc Reasoning Challenge (ARC) that can test an artificial intelligence on its understanding of the way our world operates.

Humans use common sense to fill in the gaps of any question they are posed, delivering answers within an understood but non-explicit context. Peter Clark, the lead researcher on ARC, explained in a statement, “Machines do not have this common sense, and thus only see what is explicitly written, and miss the many implications and assumptions that underlie a piece of text.”

The test asks basic multiple-choice questions that draw from general knowledge. For example, one ARC question is: “Which item below is not made from a material grown in nature?” The possible answers are a cotton shirt, a wooden chair, a plastic spoon and a grass basket.

Read more

Mar 9, 2018

Give double-layer graphene a twist and it superconducts

Posted by in category: materials

When graphene layers are twisted to a “magic angle,” the material superconducts.

Read more

Mar 4, 2018

Elusive Higgs-Like State Created in Exotic Materials

Posted by in categories: materials, quantum physics

Two teams of physicists have figured out how to create a “mini universe,” which could help researchers understand the strange behavior of deeply quantum systems.

Read more

Mar 2, 2018

Could hemp nanosheets topple graphene for making the ideal supercapacitor?

Posted by in categories: energy, materials

As hemp makes a comeback in the U.S. after a decades-long ban on its cultivation, scientists are reporting that fibers from the plant can pack as much energy and power as graphene, long-touted as the model material for supercapacitors. They’re presenting their research, which a Canadian start-up company is working on scaling up, at the 248th National Meeting & Exposition of the American Chemical Society (ACS).

David Mitlin, Ph.D., explains that are energy storage devices that have huge potential to transform the way future electronics are powered. Unlike today’s rechargeable batteries, which sip up energy over several hours, supercapacitors can charge and discharge within seconds. But they normally can’t store nearly as much energy as batteries, an important property known as energy density. One approach researchers are taking to boost supercapacitors’ energy density is to design better electrodes. Mitlin’s team has figured out how to make them from certain fibers—and they can hold as much energy as the current top contender: graphene.

“Our device’s electrochemical performance is on par with or better than graphene-based devices,” Mitlin says. “The key advantage is that our electrodes are made from biowaste using a simple process, and therefore, are much cheaper than graphene.”

Continue reading “Could hemp nanosheets topple graphene for making the ideal supercapacitor?” »