Blog

Archive for the ‘materials’ category: Page 223

Nov 11, 2019

‘Water cloak’ uses electromagnetic waves to eliminate turbulence

Posted by in categories: computing, materials

We could essentially control water at the coast lines with magnetism keeping it from eroding things.


Fuel-efficient ships that produce no wakes could soon be a reality thanks to computer simulations of “water cloaks” done by two researchers in the US. Yaroslav Urzhumov and Dean Culver of Duke University have shown that ions present in ocean water can be accelerated by electromagnetic waves in such a way that any turbulence created by sea-going vessels is cancelled out. Their work offers new opportunities for creating ships with greater propulsion efficiency – and could also be used to make vessels that are harder to detect.

“This cloaking idea opens a new dimension to create forces around an underwater vessel or object, which is absolutely required to achieve full wake cancellation,” says Urzhumov.

Continue reading “‘Water cloak’ uses electromagnetic waves to eliminate turbulence” »

Nov 10, 2019

Hydrogen Boride Nanosheets: A Promising Material for Hydrogen Carrier

Posted by in categories: innovation, materials

Innovative nanosheets made from equal parts of hydrogen and boron have a greater capacity to store and release hydrogen compared with conventional metal-based materials.

Nov 7, 2019

“Unsinkable metal” stays afloat even with holes punched in it

Posted by in categories: materials, nanotechnology

Superhydrophobic materials, which are excellent at repelling water, can be extremely useful for a whole range of reasons, both obvious and not-so-obvious. They can prevent ice from building up on surfaces, make electronics waterproof, make ships more efficient or keep people from peeing in public. Now engineers have found a quirky new use for superhydrophobic materials – making “unsinkable” metals that stay floating even when punctured.

Superhydrophobic materials get their water-repelling properties by trapping air in complex surfaces. These air bubbles make it hard for water to stick, so droplets instead bounce or roll right off. But, of course, air also makes things buoyant, so the team set out to test how superhydrophobic materials could be used to make objects that float better.

Continue reading “‘Unsinkable metal’ stays afloat even with holes punched in it” »

Nov 7, 2019

Simulated sunlight reveals how 98% of plastics at sea go missing each year

Posted by in categories: food, materials

Trillions of plastic fragments are afloat at sea, which cause large “garbage patches” to form in rotating ocean currents called subtropical gyres. As a result, impacts on ocean life are increasing and affecting organisms from large mammals to bacteria at the base of the ocean food web. Despite this immense accumulation of plastics at sea, it only accounts for 1 to 2 percent of plastic debris inputs to the ocean. The fate of this missing plastic and its impact on marine life remains largely unknown.

It appears that sunlight-driven photoreactions could be an important sink of buoyant plastics at sea. Sunlight also may have a role in reducing plastics to sizes below those captured by oceanic studies. This theory could partly explain how more than 98 percent of the plastics entering the oceans go missing every year. However, direct, experimental evidence for the photochemical degradation of marine plastics remains rare.

A team of scientists from Florida Atlantic University’s Harbor Branch Oceanographic Institute, East China Normal University and Northeastern University conducted a unique study to help elucidate the mystery of missing plastic fragments at sea. Their work provides novel insight regarding the removal mechanisms and potential lifetimes of a select few microplastics.

Nov 5, 2019

Suspended layers make a special superconductor

Posted by in categories: materials, particle physics

In superconducting materials, an electric current will flow without any resistance. There are quite a few practical applications of this phenomenon; however, many fundamental questions remain as yet unanswered. Associate Professor Justin Ye, head of the Device Physics of Complex Materials group at the University of Groningen, studied superconductivity in a double layer of molybdenum disulfide and discovered new superconducting states. The results were published in the journal Nature Nanotechnology on 4 November.

Superconductivity has been shown in monolayer crystals of, for example, molybdenum disulphide or tungsten disulfide that have a thickness of just three atoms. “In both monolayers, there is a special type of in which an protects the from external magnetic fields,” Ye explains. Normal superconductivity disappears when a large external magnetic field is applied, but this Ising superconductivity is strongly protected. Even in the strongest static magnetic field in Europe, which has a strength of 37 Tesla, the superconductivity in tungsten disulfide does not show any change. However, although it is great to have such strong protection, the next challenge is to find a way to control this protective effect, by applying an electric field.

Nov 2, 2019

The Next Big Thing in ‘Green’ Packaging Is Hemp Bioplastic

Posted by in categories: materials, sustainability

Hemp is poised to become an immense new source of sustainable, domestically produced industrial raw materials.

Nov 2, 2019

Northrop successfully launches Cygnus cargo spacecraft for the ISS

Posted by in categories: materials, space

An Antares rocket from Northrop Grumman has successfully launched the Cygnus cargo spacecraft on its way to the International Space Station. The launch happened at 9:59AM from the Mid Atlantic Regional Spaceport as anticipated. Assuming nothing unusual happens, NASA says the cargo vessel will arrive at the ISS on Monday, November 4, carrying a huge load of supplies and scientific materials.

Nov 1, 2019

Japan proposes wooden cars made of plant-based cellulose nanofibers

Posted by in categories: materials, transportation

One-fifth the weight of steel but five times the strength, plant-based cellulose nanofiber (CNF) offers carmakers the opportunity to build strong, lightweight cars while sustainably removing as much as 2,000 kg (4,400 lb) of carbon from the car’s life cycle.

We’ve written before about the extraordinary properties of CNFs, which were last year demonstrated to be stronger than spider silk. Made essentially from wood, but chipped, pulped and boiled in chemicals to remove lignin and hemicellulose, it’s a highly condensed, lightweight and incredibly strong material that’s also very recyclable.

It can also, as it turns out, be used in manufacturing, where it can be injection molded as a resin-reinforced slurry to form complex shapes – and the Japanese Ministry of the Environment sees it as a potential way for automakers to reduce weight and sustainably reduce their carbon footprint.

Oct 25, 2019

Los Angeles Is Building a Road From Recycled Plastic Bottles

Posted by in category: materials

First India, now LA.


It’s taking a new approach to road construction.

Oct 25, 2019

Rocket Report: Would you buy Virgin Galactic stock? Rocket Lab goes lunar

Posted by in categories: materials, satellites

Potential for small science missions … “Small satellites will play a crucial role in science and exploration, as well as providing communications and navigation infrastructure to support returning humans to the Moon,” Rocket Lab head honcho Peter Beck said. “They play a vital role as pathfinders to retire risk and lay down infrastructure for future missions. We think this could be useful for CubeSat science around the Moon or possibly communications relay capability on the cheap.” (submitted by 3ch0 and ADU)

Firefly considering AR1 engine for its Beta rocket. Firefly Aerospace has said it is collaborating with engine-maker Aerojet Rocketdyne to increase the performance of its upcoming Alpha launch vehicle, and the company is also considering Aerojet Rocketdyne’s AR1 engine for a future launch vehicle, SpaceNews reports. In a statement, Firefly CEO Tom Markusic praised the AR1 as an engine well suited for Beta but stopped short of saying the engine’s selection is a done deal.

How far along is AR1 really? … Markusic: “Aerojet Rocketdyne’s AR1 engine, which incorporates the latest advances in propulsion technology, materials science, and manufacturing techniques, is incredibly well-suited to power Beta given its cost-effective, high-performance capabilities.” It is not at all clear to us how close Aerojet is to completing and qualifying the AR1 engine. It also seems like Firefly should get Alpha up and running before it worries too much about the larger Beta rocket. (submitted by Unrulycow)