Toggle light / dark theme

Addressing the challenge of controlling electronic states in materials, the scientific community has been exploring innovative methods. Recently, researchers from Peking University, led by Professor Nanlin Wang, in collaboration with Professor Qiaomei Liu and Associate Research Scientist Dong Wu, uncovered how ultrafast lasers can manipulate non-volatile, reversible control over the electronic polar states in the charge-density-wave material EuTe4 at room temperature.

Researchers at Università Cattolica, Brescia campus, have discovered that the transition from insulating to conductive behavior in certain materials is driven by topological defects in the structure.

A new route to materials with complex disordered magnetic properties at the quantum level has been produced by scientists for the first time. The material, based on a framework of ruthenium, fulfills the requirements of the Kitaev quantum spin liquid state—an elusive phenomenon that scientists have been trying to understand for decades.

Fatbergs threaten sewers, but RMIT engineers have created a protective concrete coating to tackle the issue.


This results in severe sewer blockages, with data indicating that half of all blockages occur in the United States and 40% in Australia.

The annual cost of maintenance and rehabilitation for these blockages is estimated at US$25 billion in the United States and A$100 million in Australia.

Now, scientists have not only cooled muons but also accelerated them in an experiment at the Japan Proton Accelerator Research Complex, or J-PARC, in Tokai. The muons reached a speed of about 4 percent the speed of light, or roughly 12,000 kilometers per second, researchers report October 15 at arXiv.org.

The scientists first sent the muons into an aerogel, a lightweight material that slowed the muons and created muonium, an atomlike combination of a positively charged muon and a negatively charged electron. Next, a laser stripped away the electrons, leaving behind cooled muons that electromagnetic fields then accelerated.

Muon colliders could generate higher energy collisions than machines that smash protons, which are themselves made up of smaller particles called quarks. Each proton’s energy is divvied up among its quarks, meaning only part of the energy goes into the collision. Muons have no smaller bits inside. And they’re preferable to electrons, which lose energy as they circle an accelerator. Muons aren’t as affected by that issue thanks to their larger mass.

An international research team has for the first time designed realistic photonic time crystals–exotic materials that exponentially amplify light. The breakthrough opens up exciting possibilities across fields such as communication, imaging and sensing by laying the foundations for faster and more compact lasers, sensors and other optical devices.

A black hole in the MAXI J1820+070 system ejected about 400 million billion pounds of gas in twin jets—equivalent to 500 million times the mass of the Empire State Building.

In a significant astronomical discovery, NASA’s Chandra X-ray Observatory captured a rare phenomenon: a black hole ejecting massive jets of material at nearly the speed of light. This black hole is part of the binary system MAXI J1820+070, positioned approximately 10,000 light-years away, which is relatively close in cosmic terms. This proximity allowed detailed observations that contribute to our understanding of how black holes interact with companion stars.

The MAXI J1820+070 system features a black hole about eight times the mass of the sun, drawing material from a companion star roughly half the sun’s mass. This process creates an accretion disk—a luminous sphere emitting bright X-rays as material is funneled toward the black hole. While some gas is absorbed, some is expelled in powerful jets that travel in opposite directions.

Polyethylene (PE) is one of the most widely used and versatile plastic materials globally, prized for its cost-effectiveness, lightweight properties and ease of formability. These characteristics make PE indispensable across a broad spectrum of applications, from packaging materials to structural plastics.