Toggle light / dark theme

Hubble snaps hotbed of high-mass star formation

The rich dust clouds that are responsible for producing these giant stars are blocking the light from Hubble’s view. The star and the jet of material it is emitting are visible near the very center.

“The small, bright orange streak is a cavity in the dust carved out by the ferocity of the jet as it streams towards us. By breaking through its dusty cocoon, the jet reveals light from the protostar, but there is still so much dust that the light is “reddened” to a fiery orange. The massive protostar lies at the very lower-left tip of this cavity,” NASA wrote in a post.

Jet-setting through a star formation hotbed!The glimmering, star-forming region seen in this #HubbleFriday view is called G35.2–0.7N. The spectacular light show is caused by a powerful jet of matter ejecting from a very young star: https://go.nasa.gov/3twrzbE pic.twitter.com/hLEwFDqZCy — Hubble (@NASAHubble) October 13, 2023

Tiny memory cell withstands extreme temperatures, enables smaller and better semiconductors for microelectronics

Materials scientists at Kiel University and the Fraunhofer Institute for Silicon Technology in Itzehoe (ISIT) have cleared another hurdle in the development and structuring of new materials for next-generation semiconductor devices, such as novel memory cells.

They have shown that ferroelectric aluminum scandium can be scaled down to a few nanometers and can store different states, making it suitable as a nanoswitch. In addition, they have proved aluminum scandium nitride to be a particularly stable and powerful semiconductor material for current technologies based on silicon, and gallium nitride. In contrast to today’s microelectronics, the material can withstand extreme temperatures of up to 1,000°C.

This opens up applications such as information storage or sensors for combustion processes in engines or turbines in both the chemical industry and in the steel industry. The results were published in the journal Advanced Science. The study was part of a research project that brings together basic research in materials development and applications in microelectronics.

Chiro-optical force observed at the nanoscale

A research group at the Institute for Molecular Science has successfully observed the left and right handedness of material structures at the nanoscale, by illuminating chiral gold nanostructures with circularly polarized light and detecting the optical force acting on a probe near the nanostructures. This result demonstrated that it is possible to analyze the chiral structure of matter at the nanoscale using light.

Chirality describes the property of a material structure not being superimposable onto its . Since the left and right hands, which are of each other, do not coincide (they are not the same), they are chiral.

Chiral objects can be distinguished to right-or left-handedness. Many substances that constitute life are chiral, and often only one of either the right-or left-handedness naturally exists. Also, in new functional materials, their chiral nature often plays an important role for the functions.

New Logic Gates Are a Million Times Faster Than Those in Today’s Chips

Year 2022 face_with_colon_three


When the team fired their ultra-fast laser at a graphene wire strung between two gold electrodes, it produced two different kinds of currents. Some of the electrons excited by the light continued moving in a particular direction once the light was switched off, while others were transient and were only in motion while the light was on. The researchers found that they could control the type of current created by altering the shape of their laser pulses, which was then used as the basis of their logic gate.

Logic gates work by taking two inputs—either 1 or 0—processing them, and providing a single output. The exact processing rules depend on the kind of logic gate implementing them, but for example, an AND gate only outputs a 1 if both its inputs are 1, otherwise it outputs a 0.

In the researchers’ new scheme, two synchronized lasers are used to create bursts of either the transient or permanent currents, which act as the inputs to the logic gate. These currents can either add up or cancel each other to provide the equivalent of a 1 or 0 as an output.

SOM-backed Prometheus Materials turns algae-like composite into masonry blocks

Colorado-based Prometheus Materials has developed masonry blocks from a low-carbon cement-like material grown from micro–algae.

The blocks, which meet the American Society for Testing and Materials (ASTM) standards, were made using an organic cement-like material grown in bioreactors that reproduces itself in ways similar to coral.

“Coral reefs, shells, and even the limestone we use to produce cement today show us that nature has already figured out how to bind minerals together in a strong, clever, and efficient way,” said Prometheus Materials co-founder Wil V Srubar III.

Detection of the Orbital Hall Effect

Two different experiments on two different transition metals reveal that a current of electron orbital angular momentum flows in response to an electric field.

In the spin Hall effect, an applied electric field drives a current of electron spin in a direction transverse to the field. In a transition metal, theorists predict that an orbital angular momentum (OAM) current can also flow. Now two groups have independently observed this so-called orbital Hall effect (OHE) [1, 2]. These observations supplement one made by a third group earlier this year [3]. Together these demonstrations constitute a step toward the development of “orbitronic” devices based on an electron’s orbital degree of freedom.

For their demonstration, Giacomo Sala of the Swiss Federal Institute of Technology (ETH) in Zurich and his colleagues turned to a phenomenon known as Hanle magnetoresistance. In a conductor, when a magnetic field is applied parallel to the direction of electron OAM, orbital moments should accumulate at the edges of the sample because of the OHE. If instead the field is applied perpendicular to electron OAM, the orbital moments should precess. The orbital moments should then fall out of phase with each other, which boosts the material’s magnetoresistance. The team observed these effects in thin films of manganese [1].

NASA’s recovered Bennu asteroid samples show evidence of carbon and water, scientists say

Rocks and soil collected from the asteroid Bennu and brought back to Earth last month by NASA’s OSIRIS-REx probe are rich in carbon and contain water-bearing clay minerals that date back to the birth of the solar system, scientists said Wednesday. The discovery gives critical insight into the formation of our planet and supports theories about how water may have arrived on Earth in the distant past.

The clay minerals “have water locked inside their crystal structure,” said Dante Lauretta, a planetary scientist at the University of Arizona and the principal investigator of the asteroid sample return mission, while revealing initial photographs of the material.

Elevating neuromorphic computing using laser-controlled filaments in vanadium dioxide

In a new Science Advances study, scientists from the University of Science and Technology of China have developed a dynamic network structure using laser-controlled conducting filaments for neuromorphic computing.

Neuromorphic computing is an emerging field of research that draws inspiration from the to create efficient and intelligent computer systems. At its core, relies on , which are computational models inspired by the neurons and synapses in the brain. But when it comes to creating the hardware, it can be a bit challenging.

Mott materials have emerged as suitable candidates for neuromorphic computing due to their unique transition properties. Mott transition involves a rapid change in electrical conductivity, often accompanied by a transition between insulating and metallic states.

Realizing attosecond core-level X-ray spectroscopy for the investigation of condensed matter systems

The many-body interaction of charges (electrons) and nuclei (phonons) plays a critical role in determining the properties and functionalities of molecules and solids. The exact correlated motion of these particles gives rise to different conductivity, energy storage capabilities, phase transitions, and superconductivity. Now, the team of ICREA Prof. at ICFO Jens Biegert has developed attosecond soft X-ray core-level spectroscopy as a method to observe the correlated interaction between charges and phonons in real time.

Attosecond soft X-ray spectroscopy relies on the use of ultrashort pulses with photon energies that cover the entire water-window range. Through high-order with an intense few-cycle short-wavelength infrared pulse, the team has successfully generated a bright 165 attosecond pulse with photon energies of up to 600 eV. By directing this ultrashort soft X-ray pulse into the sample, the high-energy photons can excite the electrons in the K-shell or L-shell to unoccupied or continuum states.

This soft X-ray absorption spectroscopy provides researchers with a powerful tool for unraveling the electronic and structural characteristics of the material at the same time.