Google says it has photographed 10 million miles of Street View imagery in a post detailing how it uses images for mapping.
Category: mapping – Page 51
Read a National Geographic magazine article about neuroscience and get information, facts, and more about cognitive function.
Astronomers from CSIRO and Curtin University have used pulsars to probe the Milky Way’s magnetic field. Working with colleagues in Europe, Canada, and South Africa, they have published the most precise catalogue of measurements towards mapping our Galaxy’s magnetic field in 3D.
The Milky Way’s magnetic field is thousands of times weaker than Earth’s, but is of great significance for tracing the paths of cosmic rays, star formation, and many other astrophysical processes. However, our knowledge of the Milky Way’s 3D structure is limited.
Dr. Charlotte Sobey, the lead author of the research paper, said “We used pulsars (rapidly-rotating neutron stars) to efficiently probe the Galaxy’s magnetic field in 3D. Pulsars are distributed throughout the Milky Way, and the intervening material in the Galaxy affects their radio-wave emission.”
This article originally appeared in the Aug. 19, 2019 issue of SpaceNews magazine.
When the Aerospace Corp. launched the Optical Communications and Sensor Demonstration in 2017, one mission objective was to test water-fueled thrusters. At the time, the idea was fairly novel. Two years later, water-based propulsion is moving rapidly into the mainstream.
Capella Space’s first radar satellite and HawkEye 360’s first cluster of three radio-frequency mapping satellites move in orbit by firing Bradford Space’s water-based Comet electrothermal propulsion system. Momentus Space and Astro Digital are testing a water plasma thruster on their joint El Camino Real mission launched in July. And an updated version of the water-fueled cold gas thrusters the Aerospace Corp. first flew in 2017 launched in early August.
Our brain has 86 billion neurons connected by 3 million kilometers of nerve fibers and The Human Brain Project is mapping it all. One of the key applications is neuromorphic computing — computers inspired by brain architecture that may one day be able to learn as we do.
#BloombergGiantLeap #Science #Technology
——-
Like this video? Subscribe to Bloomberg on YouTube: https://www.youtube.com/Bloomberg?sub_confirmation=1
Bloomberg is the First Word in business news, delivering breaking news & analysis, up-to-the-minute market data, features, profiles and more: http://www.bloomberg.com
As an astronomer, there is no better feeling than achieving “first light” with a new instrument or telescope. It is the culmination of years of preparations and construction of new hardware, which for the first time collects light particles from an astronomical object.
This is usually followed by a sigh of relief and then the excitement of all the new science that is now possible.
On October 22, the Dark Energy Spectroscopic Instrument (DESI) on the Mayall Telescope in Arizona, US, achieved first light. This is a huge leap in our ability to measure galaxy distances – enabling a new era of mapping the structures in the Universe.
With the Skydio 2 Dock, a drone-in-a-box solution, the California startup wants to let companies rely on its obstacle-dodging, self-flying drone for automated mapping and surveillance — no humans needed.
Maps of the long filaments of gas that hold the universe together might one day help trace and unveil dark matter.
Rice University physicist Qimiao Si began mapping quantum criticality more than a decade ago, and he’s finally found a traveler that can traverse the final frontier.
The traveler is an alloy of cerium palladium and aluminum, and its journey is described in a study published online this week in Nature Physics by Si, a theoretical physicist and director of the Rice Center for Quantum Materials (RCQM), and colleagues in China, Germany and Japan.
Si’s map is a graph called a phase diagram, a tool that condensed-matter physicists often use to interpret what happens when a material changes phase, as when a solid block of ice melts into liquid water.
Finally, the future that children of the ’80s want to see is on its way. NASA is working on its very own Transformer — a bot called Shapeshifter, made up of smaller robots which can combine into different configurations to roll, swim, fly, and float.
Shapeshifter is a prototype for exploring Saturn’s moon Titan. Before it ended its mission by burning up in Saturn’s rings, the Cassini probe flew by Titan more than one hundred times, observing the moon which is surprisingly similar to Earth. It has rivers, lakes, and rain, but instead of being made of water, these bodies are made of liquid methane and ethane. On Earth, these are gases, but in the freezing temperatures of Titan, they are liquid. Cassini collected mapping data of the surface, and scientists have been keen to discover more since then.
“We have very limited information about the composition of the surface [of Titan],” Ali Agha, Principal Investigator at NASA’s Jet Propulsion Laboratory (JPL), said in a statement. “Rocky terrain, methane lakes, cryovolcanoes — we potentially have all of these, but we don’t know for certain. So we thought about how to create a system that is versatile and capable of traversing different types of terrain but also compact enough to launch on a rocket.”