Breaking up a phosphatase complex can help restore balance in metabolism and support healthy aging.
Researchers discovered that a longevity gene from centenarians can reverse heart damage linked to progeria, suggesting a new approach to treating rapid and age-related heart aging.
A major advancement has been made in understanding a rare genetic disorder that causes children to age prematurely. Scientists from the University of Bristol and IRCCS MultiMedica identified “longevity genes” found in people who live beyond 100 years, which appear to protect the heart and blood vessels during aging. Their study suggests these genes could potentially reverse the damage caused by this fatal condition.
Understanding progeria and its effects.
Scientists at Stanford have created a non-invasive ultrasound method of brain cleansing that boosted the survival rate of mice after stroke by activating natural detoxification mechanisms. The technology, accidentally discovered during experiments with the blood-brain barrier, stimulates microglial immune cells to dispose of toxic waste and improves the circulation of cerebrospinal fluid. The method opens the way to treating the consequences of strokes and injuries without drugs.
A non-invasive, drug-free ultrasound method helps cleanse the brain and reduce inflammation, potentially offering a radically simple new approach to treating neurological diseases.
Mayo Clinic researchers have developed a new tool that can estimate a person’s risk of developing memory and thinking problems associated with Alzheimer’s disease years before symptoms appear.
The research, published in The Lancet Neurology, builds on decades of data from the Mayo Clinic Study of Aging—one of the world’s most comprehensive population-based studies of brain health.
The study found that women have a higher lifetime risk than men of developing dementia and mild cognitive impairment (MCI), a transitional stage between healthy aging and dementia that often affects quality of life but still allows people to live independently. Men and women with the common genetic variant, APOE ε4, also have a higher lifetime risk.
Speaking multiple languages could slow down brain ageing and help to prevent cognitive decline, a study of more than 80,000 people has found.
The work, published in Nature Aging on 10 November1, suggests that people who are multilingual are half as likely to show signs of accelerated biological ageing as are those who speak just one language.
“We wanted to address one of the most persistent gaps in ageing research, which is if multilingualism can actually delay ageing,” says study co-author Agustín Ibáñez, a neuroscientist at the Adolfo Ibáñez University in Santiago, Chile. Previous research in this area has suggested that speaking multiple languages can improve cognitive functions such memory and attention2, which boosts brain health as we get older. But many of these studies rely on small sample sizes and use unreliable methods of measuring ageing, which leads to results that are inconsistent and not generalizable.
“The effects of multilingualism on ageing have always been controversial, but I don’t think there has been a study of this scale before, which seems to demonstrate them quite decisively,” says Christos Pliatsikas, a cognitive neuroscientist at the University of Reading, UK. The paper’s results could “bring a step change to the field”, he adds.
They might also “encourage people to go out and try to learn a second language, or keep that second language active”, says Susan Teubner-Rhodes, a cognitive psychologist at Auburn University in Alabama.
Having too many fat cells can lead to low-grade, body-wide inflammation that underlies brain aging.
Chronic venous insufficiency due to obesity may impair cognitive function.
It’s never too late to positively impact brain aging by losing weight.
Mind wandering, confusion, and a reduced ability to focus thoughts are classic early symptoms of obesity related cognitive decline.
Background: The search for reliable aging biomarkers using proteomic databases and large-scale proteomic studies presents a significant challenge in biogerontology. Existing proteomic databases and studies contain valuable information; however, there is inconsistency in approaches to biomarker selection and data integration. This creates barriers to translating existing knowledge into clinical practice and use in biomedical research. This work analyzed experimental proteomic studies, the content of proteomic databases, and proposed recommendations for optimization and improvement of proteomic database formation and enrichment. Methods: The study utilized publications devoted to proteomic data acquisition methods, proteomic databases, and experimental studies.
Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD
Discount Links/Affiliates:
Blood testing (where I get the majority of my labs): https://www.ultalabtests.com/partners/michaellustgarten.
At-Home Metabolomics: https://www.iollo.com?ref=michael-lustgarten.
Use Code: CONQUERAGING At Checkout.
Clearly Filtered Water Filter: https://get.aspr.app/SHoPY
Epigenetic, Telomere Testing: https://trudiagnostic.com/?irclickid=U-s3Ii2r7xyIU-LSYLyQdQ6…M0&irgwc=1
Use Code: CONQUERAGING
NAD+ Quantification: https://www.jinfiniti.com/intracellular-nad-test/
Hayflick and Moorhead initially defined cellular senescence in 1961 [10]. As senescent cells become enlarged with a flattened morphology, they exhibit an irreversible loss of proliferative potential. Changes in the expression of genetic profiles in these cells result in the secretion of pro-inflammatory molecules [11]. Senescent cells accumulate in various tissues and organs associated with aging and age-related disorders, and they are believed to become pathogenic by introducing chronic inflammation and tissue remodeling. Two major senescence-associated pathways have been highlighted in the recent literature. Telomeres are situated at both ends of a chromosome and replicate incompletely during cell division, leading to telomere shortening. When telomere shortening goes beyond the physiological range, it is recognized as DNA damage and activates replicative cellular senescence, primarily through the p53 or p16INK4a signaling pathways. p16INK4a also plays a crucial role in the mitotic process. It regulates the G1/S-phase transition of the cell cycle, helping to maintain the accuracy of cell proliferation. Normal cell division requires smooth progression through the cell cycle, and p16INK4a ensures that cells halt proliferation in the presence of DNA damage or unfavorable division conditions, thereby preserving genomic stability and preventing errors or malignancies during mitosis. Another form of cellular senescence is stress-induced premature senescence, triggered by various external and internal stress signals, including oxidative stress, irradiation, oncogenic activation, and metabolic stress. Research indicates that p53/p21 and p16INK4a signaling are primarily activated in response to DNA damage and telomere dysfunction. In contrast, p16INK4a signaling is mainly associated with mitogenic and general cellular stress [12, 13]. IGFBP7 is a member of the IGFBP family. It is a stress-responsive gene that can be upregulated in response to oxidative stress and DNA damage. The IGFBP7–p53 pathway is a critical stress–senescence pathway essential for regulating cell fate, such as cell cycle arrest, senescence, and apoptosis. This pathway may be a target for anti-tumor and anti-fibrotic therapies; however, its inhibitory effect on tissue regeneration should also be considered [14]. Senescent cells exhibit various morphological and biochemical characteristics that aid their detection [15]. Currently, no single marker can definitively identify a senescent cell; instead, combinations of markers and analytical techniques are commonly employed to improve detection specificity. Table 1 displays some widely used markers for this purpose. Many stressors that induce senescence activate the p53/p21 or p16INK4a pathways. However, it’s important to note that activating these signaling pathways does not provide conclusive evidence that the cells are senescent [16]. Currently, senescence-associated ß-galactosidase (SA-ß-galactosidase) is widely used to identify senescent cells as a marker of senescence, which has a pH optimum of 6.0; however, the SA-ß-gal activity is also known to increase in fibroblasts cultured under serum starvation [17,18,19]. Another category of sensitive senescence indicators includes DNA damage response (DDR) gene products, which are usually visualized through immunofluorescence. The DDR protein most commonly used for this purpose is γH2AX phosphorylated at Ser-139, which accumulates at sites of double-stranded DNA breaks and facilitates the detection of proteins involved in the double-strand break repair pathway [20, 21]. DNA damage at telomeres suggests that both cardiomyocytes and various non-cardiomyocytes, including myofibroblasts, endothelial cells, and vascular smooth muscle cells, contribute to the senescence of the cardiovascular system. These cells interact within the microenvironment, altering cardiovascular function and promoting disease progression. Additionally, some studies have monitored cytokine secretion related to the senescence-associated secretory phenotype (SASP), characterized by the extensive release of pro-inflammatory compounds. Common SASP factors secreted by senescent cells include signaling molecules such as interleukins (IL-6, IL-1ß, IL-8) and other factors [22, 23]. The cell makers mentioned above are all related to senescence, but do not exist in isolation.
In summary, cells that show positive senescent markers are well recognized for their causal roles in the progression of pathologies associated with age-related diseases [24, 25]. Investigating biological markers that provide direct evidence of cellular senescence continues to be a significant area of research. In this review article, we aim to outline the role of senescence in cardiovascular disease and explore the potential of therapies targeting senescent cells.
Cardiomyocytes comprise 25–35% of the total number of cells in the heart [26]. Their cell cycle arrest cannot easily define the senescence of cardiomyocytes because they are terminally differentiated cells. Cardiomyocytes undergo cell cycle arrest due to the activation of the DNA damage response triggered by exposure to higher oxygen concentrations in the postnatal environment [27]. The accumulating environment indicates these cells retain proliferative capacity. It was reported that cardiomyocyte turnover was < 1% per year [28]. Senescent cardiomyocytes exhibit significant functional, morphological, and metabolic differences compared to normal cardiomyocytes. Hallmarks of senescent cardiomyocytes include mitochondrial dysfunction, DNA damage, contractile dysfunction, endoplasmic reticulum (ER) stress, SASP, and hypertrophic growth [29].