Toggle light / dark theme

In a groundbreaking use of teleportation, critical units of a quantum processor have been successfully spread across multiple computers, proving the potential of distributing quantum modules without compromising on their performance.

While the transfer only took place over a space of two meters (about six feet) in an Oxford University laboratory, the leap was more than enough to emphasize the feasibility of scaling quantum technology by teleporting quantum states across an ‘internet’ of connected systems.

Teleportation is a quirk of physics that only makes sense through a quantum lens, where objects exist in a blur of possible characteristics until processes of measurement force them to adopt each state.

We’ve yet to see a falling piece of space debris strike an airplane, but if it happens, the consequences would almost certainly be catastrophic – and according to a new study, the danger posed to planes is only rising.

The researchers behind the study, from the University of British Columbia in Canada, looked at worldwide flight data to model the distribution of planes in the sky, then compared this to records of uncontrolled rocket body reentries.

The increasing risk is also being driven in part by the mass deployment of satellites, like SpaceX’s Starlink, which will eventually reenter our airspace.

The rapid advancement of technologies like artificial intelligence (AI) and the Internet of Things (IoT) has heightened the demand for high-speed, energy-efficient memory devices. Traditional memory technologies often struggle to balance performance with power consumption.

Spintronic devices, which leverage electron spin rather than charge, present a promising alternative. In particular, TMD materials are attractive due to their unique electronic properties and potential for miniaturization.

Researchers have proposed the development of gate-controllable TMD spin valves to address these challenges. By integrating a gate mechanism, these devices can modulate spin transport properties, enabling precise control over memory operations. This approach aims to enhance tunneling magnetoresistance (TMR) ratios, improve spin current densities, and reduce during read and write processes. The study is published in the Journal of Alloys and Compounds.

Optical fibers are fundamental components in modern science and technology due to their inherent advantages, providing an efficient and secure medium for applications such as internet communication and big data transmission. Compared with single-mode fibers (SMFs), multimode fibers (MMFs) can support a much larger number of guided modes (~103 to ~104), offering the attractive advantage of high-capacity information and image transportation within the diameter of a hair. This capability has positioned MMFs as a critical tool in fields such as quantum information and micro-endoscopy.

However, MMFs pose a significant challenge: their highly scattering nature introduces severe modal dispersion during transmission, which significantly degrades the quality of transmitted information. Existing technologies, such as (ANNs) and spatial light modulators (SLMs), have achieved limited success in reconstructing distorted images after MMF transmission. Despite these advancements, the direct optical transmission of undistorted images through MMFs using micron-scale integrated has remained an elusive goal in optical research.

Addressing the longstanding challenges of multi-mode fiber (MMF) transmission, the research team led by Prof. Qiming Zhang and Associate Prof. Haoyi Yu from the School of Artificial Intelligence Science and Technology (SAIST) at the University of Shanghai for Science and Technology (USST) has introduced a groundbreaking solution. The study is published in the journal Nature Photonics.

The aim of the following paper was to overview the body-composition-related changes and molecular effects of different chemotherapy agents used in cancer treatment on skeletal-muscle remodeling.

— Pedrosa, et al.

Full text is available


Paraneoplastic conditions such as cancer cachexia are often exacerbated by chemotherapy, which affects the patient’s quality of life as well as the response to therapy. The aim of this narrative review was to overview the body-composition-related changes and molecular effects of different chemotherapy agents used in cancer treatment on skeletal-muscle remodeling. A literature search was performed using the Web of Science, Scopus, and Science Direct databases and a total of 77 papers was retrieved. In general, the literature survey showed that the molecular changes induced by chemotherapy in skeletal muscle have been studied mainly in animal models and mostly in non-tumor-bearing rodents, whereas clinical studies have essentially assessed changes in body composition by computerized tomography.

In the incident analyzed by the Canadian cybersecurity company, the initial access was gained to a targeted endpoint via a vulnerable SimpleHelp RMM instance (“194.76.227[.]171”) located in Estonia.

Upon establishing a remote connection, the threat actor has been observed performing a series of post-exploitation actions, including reconnaissance and discovery operations, as well as creating an administrator account named “sqladmin” to facilitate the deployment of the open-source Sliver framework.

The persistence offered by Sliver was subsequently abused to move laterally across the network, establishing a connection between the domain controller (DC) and the vulnerable SimpleHelp RMM client and ultimately installing a Cloudflare tunnel to stealthily route traffic to servers under the attacker’s control through the web infrastructure company’s infrastructure.

A 7-Zip vulnerability allowing attackers to bypass the Mark of the Web (MotW) Windows security feature was exploited by Russian hackers as a zero-day since September 2024.

According to Trend Micro researchers, the flaw was used in SmokeLoader malware campaigns targeting the Ukrainian government and private organizations in the country.

The Mark of the Web is a Windows security feature designed to warn users that the file they’re about to execute comes from untrusted sources, requesting a confirmation step via an additional prompt. Bypassing MoTW allows malicious files to run on the victim’s machine without a warning.

In today’s AI news, Google launched its much-anticipated new flagship AI model, Gemini 2.0 Pro Experimental, on Wednesday. The announcement was part of a series of other AI model releases. The company is also making its reasoning model, Gemini 2.0 Flash Thinking, available in the Gemini app.

In other advancements, LinkedIn is testing a new job-hunting tool that uses a custom large language model to comb through huge quantities of data to help people find prospective roles. The company believes that artificial intelligence will help users unearth new roles they might have missed in the typical search process.

S Deep Research feature, which can autonomously browse the web and create research reports. ‘ + s up from hitting $50 million ARR, or the yearly value of last month s case for why they are the best positioned to take over TikTok And, in this episode, a16z Partner Marc Andrusko chats with Mastercard’s Chief AI and Data Officer Greg Ulrich about Mastercard’s long history of using AI, the opportunities (and potential risks) associated with integrating generative AI into fraud detection, determining what tech to employ based on use cases, and the best advice he’s ever gotten.

Then, power your AI transformation with an insightful keynote from Scott Guthrie, Executive Vice President, Cloud + AI Group at Microsoft, and other industry experts. Watch this keynote presentation from NYC stop on Microsoft’s AI Tour.

We close out with this insightful discussion with Malcolm Gladwell and Ric Lewis, SVP of Infrastructure at IBM. Learn how hardware capabilities enable the matrix math behind large language models and how AI is transforming industries—from banking to your local coffee shop.

Thats all for today, but AI is moving fast — like, comment, and subscribe for more AI news! Please vote for me in the Entrepreneur of Impact Competition today! Thank you for supporting my partners and I — it’s how I keep Neural News Network free.

[](https://open.substack.com/pub/remunerationlabs/p/google-laun…hare=true)

The concept of computational consciousness and its potential impact on humanity is a topic of ongoing debate and speculation. While Artificial Intelligence (AI) has made significant advancements in recent years, we have not yet achieved a true computational consciousness capable of replicating the complexities of the human mind.

AI technologies are becoming increasingly sophisticated, performing tasks that were once exclusive to human intelligence. However, fundamental differences remain between AI and human consciousness. Human cognition is not purely computational; it encompasses emotions, subjective experiences, self-awareness, and other dimensions that machines have yet to replicate.

The rise of advanced AI systems will undoubtedly transform society, reshaping how we work, communicate, and interact with the digital world. AI enhances human capabilities, offering powerful tools for solving complex problems across diverse fields, from scientific research to healthcare. However, the ethical implications and potential risks associated with AI development must be carefully considered. Responsible AI deployment, emphasizing fairness, transparency, and accountability, is crucial.

In this evolving landscape, ETER9 introduces an avant-garde and experimental approach to AI-driven social networking. It redefines digital presence by allowing users to engage with AI entities known as ‘noids’ — autonomous digital counterparts designed to extend human presence beyond time and availability. Unlike traditional virtual assistants, noids act as independent extensions of their users, continuously learning from interactions to replicate communication styles and behaviors. These AI-driven entities engage with others, generate content, and maintain a user’s online presence, ensuring a persistent digital identity.

ETER9’s noids are not passive simulations; they dynamically evolve, fostering meaningful interactions and expanding the boundaries of virtual existence. Through advanced machine learning algorithms, they analyze user input, adapt to personal preferences, and refine their responses over time, creating an AI representation that closely mirrors its human counterpart. This unique integration of AI and social networking enables users to sustain an active online presence, even when they are not physically engaged.

The advent of autonomous digital counterparts in platforms like ETER9 raises profound questions about identity and authenticity in the digital age. While noids do not possess true consciousness, they provide a novel way for individuals to explore their own thoughts, behaviors, and social interactions. Acting as digital mirrors, they offer insights that encourage self-reflection and deeper understanding of one’s digital footprint.

As this frontier advances, it is essential to approach the development and interaction with digital counterparts thoughtfully. Issues such as privacy, data security, and ethical AI usage must be at the forefront. ETER9 is committed to ensuring user privacy and maintaining high ethical standards in the creation and functionality of its noids.

ETER9’s vision represents a paradigm shift in human-AI relationships. By bridging the gap between physical and virtual existence, it provides new avenues for creativity, collaboration, and self-expression. As we continue to explore the potential of AI-driven digital counterparts, it is crucial to embrace these innovations with mindful intent, recognizing that while AI can enhance and extend our digital presence, it is our humanity that remains the core of our existence.

As ETER9 pushes the boundaries of AI and virtual presence, one question lingers:

— Could these autonomous digital counterparts unlock deeper insights into human consciousness and the nature of our identity in the digital era?

© 2025 __Ӈ__