Toggle light / dark theme

A new quantum random-access memory device reads and writes information using a chirped electromagnetic pulse and a superconducting resonator, making it significantly more hardware-efficient than previous devices.

Random-access memory (or RAM) is an integral part of a computer, acting as a short-term memory bank from which information can be quickly recalled. Applications on your phone or computer use RAM so that you can switch between tasks in the blink of an eye. Researchers working on building future quantum computers hope that such systems might one day operate with analogous quantum RAM elements, which they envision could speed up the execution of a quantum algorithm [1, 2] or increase the density of information storable in a quantum processor. Now James O’Sullivan of the London Centre for Nanotechnology and colleagues have taken an important step toward making quantum RAM a reality, demonstrating a hardware-efficient approach that uses chirped microwave pulses to store and retrieve quantum information in atomic spins [3].

Just like quantum computers, experimental demonstrations of quantum memory devices are in their early days. One leading chip-based platform for quantum computation uses circuits made from superconducting metals. In this system, the central processing is done with superconducting qubits, which send and receive information via microwave photons. At present, however, there exists no quantum memory device that can reliably store these photons for long times. Luckily, scientists have a few ideas.

Artificial intelligence has long been a hot topic: a computer algorithm “learns” by being taught by examples: What is “right” and what is “wrong.” Unlike a computer algorithm, the human brain works with neurons—cells of the brain. These are trained and pass on signals to other neurons. This complex network of neurons and the connecting pathways, the synapses, controls our thoughts and actions.

Biological signals are much more diverse when compared with those in conventional computers. For instance, neurons in a biological neural network communicate with ions, biomolecules and neurotransmitters. More specifically, neurons communicate either chemically—by emitting the messenger substances such as neurotransmitters—or via , so-called “action potentials” or “spikes”.

Artificial neurons are a current area of research. Here, the efficient communication between the biology and electronics requires the realization of that emulate realistically the function of their biological counterparts. This means artificial neurons capable of processing the diversity of signals that exist in biology. Until now, most artificial neurons only emulate their biological counterparts electrically, without taking into account the wet biological environment that consists of ions, biomolecules and neurotransmitters.

This time I come to talk about a new concept in this Age of Artificial Intelligence and the already insipid world of Social Networks. Initially, quite a few years ago, I named it “Counterpart” (long before the TV series “Counterpart” and “Black Mirror”, or even the movie “Transcendence”).

It was the essence of the ETER9 Project that was taking shape in my head.

Over the years and also with the evolution of technologies — and of the human being himself —, the concept “Counterpart” has been getting better and, with each passing day, it makes more sense!

You can imagine starting at the beginning, evolving the Universe forward according to the laws of physics, and measuring those earliest signals and their imprints on the Universe to determine how it has expanded over time. Alternatively, you can imagine starting here and now, looking out at the distant objects as we see them receding from us, and then drawing conclusions as to how the Universe has expanded from that.

Both of these methods rely on the same laws of physics, the same underlying theory of gravity, the same cosmic ingredients, and even the same equations as one another. And yet, when we actually perform our observations and make those critical measurements, we get two completely different answers that don’t agree with one another. This is, in many ways, the most pressing cosmic conundrum of our time. But there’s still a possibility that no one is mistaken and everyone is doing the science right. The entire controversy over the expanding Universe could go away if just one new thing is true: if there was some form of “early dark energy” in the Universe. Here’s why so many people are compelled by the idea.

Cybersecurity researchers have uncovered 29 packages in Python Package Index (PyPI), the official third-party software repository for the Python programming language, that aim to infect developers’ machines with a malware called W4SP Stealer.

“The main attack seems to have started around October 12, 2022, slowly picking up steam to a concentrated effort around October 22,” software supply chain security company Phylum said in a report published this week.

The list of offending packages is as follows: typesutil, typestring, sutiltype, duonet, fatnoob, strinfer, pydprotect, incrivelsim, twyne, pyptext, installpy, faq, colorwin, requests-httpx, colorsama, shaasigma, stringe, felpesviadinho, cypress, pystyte, pyslyte, pystyle, pyurllib, algorithmic, oiu, iao, curlapi, type-color, and pyhints.

Bias in AI systems is proving to be a major stumbling block in efforts to more broadly integrate the technology into our society.

A new initiative that will reward researchers for finding any prejudices in AI systems could help solve the problem.

The effort is modeled on the bug bounties that software companies pay to cybersecurity experts who alert them of any potential security flaws in their products.

What is driving the mulitverse theory? Are the multiverse stories only a sticky-plaster solution to the Big Bang theory problem? Leading thinkers Sabine Hossenfelder, Roger Penrose and Michio Kaku debate.

00:00 Introduction.
02:22 Michio Kaku | Multiverse theory has now dominating cosmology; it is unavoidable.
06:03 Sabine Hossenfelder | Believing in the multiverse is the logical equivalent to believing in God.
07:57 Roger Penrose | Universes are sequential and so are not independent worlds.
16:36 Theme 1 | Do scientifc theories need to be testable?
28:45 Theme 2 | Are tales of the multiverse solutions to the Big Bang theory in trouble?
42:49 Theme 3 | Will theories of the universe always be bound by untestable elements?

Multiverses are everywhere. Or at least the theory is. Everyone from physicists Stephen Hawking and Brian Greene to Marvel superheroes have shown their support for the idea. But critics argue that not only is the multiverse improbable, it is also fantasy and fundamentally unscientific as the theory can never be tested — a requirement that has defined science from its outset.

Should we reject the grand claims and leave multiverse theories to the pages of comic books? Are tales of the multiverse really sticking-plaster solutions for Big Bang theory in trouble? Or should we take multiverse theory as seriously as its proponents, and accept that modern science has moved beyond the bounds of experiment and into that of imagination?

Scientists from around the world have reconstructed the laws of gravity, to help get a more precise picture of the universe and its constitution.

The standard model of is based on General Relativity, which describes gravity as the curving or warping of space and time. While the Einstein equations have been proven to work very well in our solar system, they had not been observationally confirmed to work over the entire .

An international team of cosmologists, including scientists from the University of Portsmouth in England, has now been able to test Einstein’s theory of gravity in the outer-reaches of space.

Given a 3D piece of origami, can you flatten it without damaging it? Just by looking at the design, the answer is hard to predict, because each and every fold in the design has to be compatible with flattening.

This is an example of a combinatorial problem. New research led by the UvA Institute of Physics and research institute AMOLF has demonstrated that machine learning algorithms can accurately and efficiently answer these kinds of questions. This is expected to give a boost to the artificial intelligence-assisted design of complex and functional (meta)materials.

In their latest work, published in Physical Review Letters this week, the research team tested how well (AI) can predict the properties of so-called combinatorial mechanical metamaterials.

Gallery QI — Becoming: An Interactive Music Journey in VR — Opening Night.
November 3rd, 2022 — Atkinson Hall auditorium.
UC San Diego — La Jolla, CA

By Shahrokh Yadegari, John Burnett, Eito Murakami and Louis Pisha.

“Becoming” is the result of a collaborative work that was initiated at the Opera Hack organized by San Diego Opera. It is an operatic VR experience based on a Persian poem by Mowlana Rumi depicting the evolution of human spirit. The audience experiences visual, auditory and tactile impressions which are partly curated and partly generated interactively in response to the player’s actions.

“Becoming” incorporates fluid and reactive graphical material which embodies the process of transformation depicted in the Rumi poem. Worlds seamlessly morph between organic and synthetic environments such as oceans, mountains and cities and are populated by continuously evolving life forms. The music is a union of classical Persian music fused with electronic music where the human voice becomes the beacon of spirit across the different stages of the evolution. The various worlds are constructed by the real-time manipulation of particle systems, flocking algorithms and terrain generation methods—all of which can be touched and influenced by the viewer. Audience members can be connected through the network and haptic feedback technology provides human interaction cues as well as an experiential stimulus.