Toggle light / dark theme

Scientists edge closer to unleashing virtually unlimited power source — here’s when it could finally go live

This high energy output could vastly improve the world’s sustainability. With fusion, energy would be near-limitless and thus easily accessible and substantially more affordable. People could enjoy lower utility bills and consistent, reliable energy.

Watch now: How bad is a gas stove for your home’s indoor air quality?

The innovative reactor would help slow down climate change and lead to a cleaner, cooler future, while helping people save money and access clean energy. Reducing energy pollution will benefit every human, reducing the health hazards of breathing polluted air or drinking contaminated water.

MRI method maps blood flows in reverse for deeper insight into brain physiology

The venous system maintains the health of our brains by removing deoxygenated blood and other waste products, but its complexity and variability have made scientific study difficult. Now, a UC Berkeley-led team of researchers has developed an innovative MRI technique that may expand our understanding of this critical system.

In a study published in Nature Communications, the researchers demonstrate how their new imaging method, Displacement Spectrum (DiSpect) MRI, maps blood flows “in reverse” to reveal the source of blood in the ’s veins. This approach could help answer long-standing questions about brain physiology as well as provide a safer, more efficient way to diagnose disease.

Like some current MRI methods, DiSpect uses the water in our blood as a tracing agent to map perfusion, or blood flow, in the brain. The water’s hydrogen atoms possess a quantum mechanical property called spin and can be magnetized when exposed to a magnetic field, like an MRI scanner. But what makes DiSpect unique is its ability to track the “memory” of these nuclear spins, allowing it to map blood flow back to its source.

Conserved brain-wide emergence of emotional response from sensory experience in humans and mice

Emotional responses to sensory experience are central to the human condition in health and disease. We hypothesized that principles governing the emergence of emotion from sensation might be discoverable through their conservation across the mammalian lineage. We therefore designed a cross-species neural activity screen, applicable to humans and mice, combining precise affective behavioral measurements, clinical medication administration, and brain-wide intracranial electrophysiology. This screen revealed conserved biphasic dynamics in which emotionally salient sensory signals are swiftly broadcast throughout the brain and followed by a characteristic persistent activity pattern. Medication-based interventions that selectively blocked persistent dynamics while preserving fast broadcast selectively inhibited emotional responses in humans and mice.

AI & Cancer: What Worked, What Failed, and Why It Matters

In this episode of The Moss Report, Ben Moss sits down with Dr. Ralph Moss to explore the real-world pros and cons of using artificial intelligence in cancer research and care.

From AI-generated health advice to PubMed citations that don’t exist, this honest conversation covers what AI tools are getting right—and where they can dangerously mislead.

Dr. Moss shares the results of his own AI test across five major platforms, exposing their strengths and surprising failures.

Whether you’re a cancer patient, caregiver, or simply curious about how AI is shaping the future of medicine, this episode is essential listening.

Links and Resources:

🌿 The Moss Method – Fight Cancer Naturally – (Paperback, Hardcover, Kindle) https://amzn.to/4dGvVjp.

Long working hours may alter brain structure, preliminary findings suggest

Long working hours may alter the structure of the brain, particularly the areas associated with emotional regulation and executive function, such as working memory and problem solving, suggest the findings of preliminary research, published online in Occupational & Environmental Medicine.

Ultimately, overwork may induce neuroadaptive changes that might affect cognitive and emotional health, say the researchers.

Long working hours have been linked to heightened risks of cardiovascular disease, metabolic disorders, and mental health issues. And the International Labor Organization (ILO) estimates that overwork kills more than 800,000 people every year, note the researchers.