Toggle light / dark theme

It sounds really obvious, but hospitals aren’t for healthy people. The world’s entire health system is really there to react once people get ill. If doctors are able to catch an illness at stage one that’s great, but if it reaches stage three or four there’s often not that much that can be done. So what if we could treat patients at stage zero and predict the likelihood of contracting diseases? We could then get treatment to people who need it much earlier and take preventative steps to avoid illness altogether.

Currently, when we think of monitoring in healthcare we’re usually referring to monitoring patients’ reactions to drugs or treatments, but this is changing. No amateur runner’s uniform is complete these days without a Fitbit or some kind of analytics tool to monitor progress, so the idea of monitoring the healthy is becoming ingrained in the public’s consciousness. But Fitbits only scrape the surface of what we can do. What if the data from fitness trackers could be combined with medical records, census data and the details of supermarket loyalty cards to predict the likelihood of contracting a particular disease?

With big data we can move from reacting to predicting, but how do we move beyond just making predictions; how do we prevent disease from occurring altogether? Up until now all of our monitoring technology has been located outside of the body, but nano-sized entities made of DNA could one day patrol the body, only acting when they come into contact with specific cells – cancer cells, for example. The technology that would turn tiny machines – roughly the size of a virus – into molecular delivery trucks that transport medication is already being worked on by bioengineers. If this kind of technology can be used to treat cancer, without needing to release toxic agents into the body, can the same technology be inserted into a healthy person and lie in wait for the opportunity to fight disease on its host’s behalf?

Read more

It seems counterintuitive, right? Rip out eight lanes of freeway through the middle of your metropolis and you’ll be rewarded with not only less traffic, but safer, more efficient cities? But it’s true, and it’s happening in places all over the world.

Many freeway systems were overbuilt in an auto-obsessed era, only to realize later that cities are actually healthier, greener, and safer without them. Like freeway cap parks, which hope to bridge the chasms through severed neighborhoods—Boston’s Big Dig is a great example—freeway removal projects try to eradicate and undo the damage wrought from highways, while creating new, multifunctional shared streets that can be utilized by transit, bikes, walkers and yes, even cars.

http://gizmodo.com/five-cities-turning-ugly-overpasses-into-…1259568561

Read more

This one kind of gives me the heebie geebies.


DNA sequencing of the deceased could lead to a number of advances in health care. A group of scientists in Denmark have launched a proposal to create the world’s first national necrogenomic database.

The idea that dead men tell no tales is about to be seriously put to shame, should a newly suggested DNA registry in Denmark become reality.

The registry would collect genomic data from the recently deceased. Coupled with information of past illnesses and ailments, the new data could generate insights into hereditary diseases, genomic disease triggers, and drug efficiency.

Scientists at Tel Aviv University in Israel have developed a “cyborg heart patch” for replacing injured cardiac tissue. There has been considerable research on creating scaffolds seeded with cardiac cells, but simply delivering a bunch of cells in a neat package produces underwhelming results. The new patch developed at TAU integrates electronics alongside the cellular scaffold to both monitor and influence the activity of the cells.

The device can record intercellular electrical activity and deliver pulses to make the cardiomyocytes contract to a defined beat. Additionally, the researchers demonstrated that the electrodes within the patch can be covered with drugs to provide controlled release of medication right to the nearby heart cells.

This is certainly an impressive achievement that may herald a truly therapeutic approach for treating cardiac infarcts and other conditions of the heart.

Read more

Yesterday, a report came from a tech company in Asia that they are proposing to do Quantum teleporting on humans. So, we have that camp; today we have the other camp with this article stating to do so means death. Personally, I have my doubts around humans or animals of any sort being able to teleport like Star Trek; great concept. However, to do so means breaking down your make up into particles and hopefully without killing you, the particles transport and reassemble themselves and everything remains healthy and functioning. Wish the test subjects all the best.


Remember last week’s video about the trouble with Star Trek’s transporter (a.k.a. a “suicide box”) by CGP Grey, delving into whether the teleported version of yourself would really be, well, you? Henry Reich of Minute Physics has posted a video response with his own resolution to the logical paradox.

You know what means… NERD FIGHT!

LONDON & MIAMI–()–Blue Prism, the pioneering developer of enterprise Robotic Process Automation (RPA) software, today announced its debut on AIM of the London Stock Exchange (LSE). The first developer of software robots to trade on the public markets, Blue Prism, working closely with its global network of partners, grew 35% last year and has deployments with more than 74 customers, including a number of the world’s largest banks, insurers, utilities, healthcare, telecommunications, service providers and other regulated industries. The initial public offering (IPO) will allow Blue Prism to support its global growth plans and enhance its profile within the RPA marketplace.

“Today’s milestone follows a successful year for the company, and marks a shift in acceptance for software robots as a mainstream choice for the enterprise digital workforce,” said Alastair Bathgate, co-founder and CEO of Blue Prism. “Software robots have been deployed successfully and strategically by large, blue chip organizations that have derived tremendous value from this new solution to the labor market, it’s not science fiction.”

Read more

Finally there’s a use for dog drool: this spring, a new startup called Embark plans to launch a DNA testing kit for dogs that will tell owners about their canine’s ancestry, and disease risk. That’s not all the founders have in mind though; they may be aiming at human diseases by enlisting our longtime best friends.

Soon, interested pooch lovers will be able to swab their dogs’ slimy cheeks and mail in the sample. By extracting DNA from the swab, Embark’s founder says they’ll be able to trace a dog’s ancestry on a global level. The “Embark Dog DNA Test Kit” will also look for genetic variants that are associated with more than 100 diseases, and inform owners if their dog has a higher than average chance of developing one of them. The kit will also tell owners if their dog is likely to pass disease-associated mutations to a pup — which will likely be valuable information for breeders. Because of this, Embark’s founders say their product will be the most complete kit of its kind. At least, that’s the idea that Embark’s founders will be pitching today at SXSW.

For the company’s founders, the real objective will be the research they’ll be able to conduct with the DNA samples; that became clear when I spoke to two of Embark’s founders on the phone last week. They spent the first 10 minutes of the call talking about the potential of dog genetics to deliver advancements in human health. In fact, they were so enthusiastic about their future research that I had to interrupt them to steer the conversation back to the product we were supposed to discuss.

Read more

CHAMPAIGN, Ill. — A new class of miniature biological robots, or bio-bots, has seen the light — and is following where the light shines.

The bio-bots are powered by muscle cells that have been genetically engineered to respond to light, giving researchers control over the bots’ motion, a key step toward their use in applications for health, sensing and the environment. Led by Rashid Bashir, the University of Illinois head of bioengineering, the researchers published their results in the Proceedings of the National Academy of Sciences.

“Light is a noninvasive way to control these machines,” Bashir said. “It gives us flexibility in the design and the motion. The bottom line of what we are trying to accomplish is the forward design of biological systems, and we think the light control is an important step toward that.”

Read more