Toggle light / dark theme

Female-to-male sex conversion in Ceratitis capitata

The Sterile Insect Technique (SIT) is based on the mass release of sterilized male insects to reduce the pest population size via infertile mating. Critical for all SIT programs is a conditional sexing strain to enable the cost-effective production of male-only populations. Compared to current female-elimination strategies based on killing or sex sorting, generating male-only offspring via sex conversion would be economically beneficial by doubling the male output. Temperature-sensitive mutations known from the D. melanogaster transformer-2 gene (tra2ts) induce sex conversion at restrictive temperatures, while regular breeding of mutant strains is possible at permissive temperatures. Since tra2 is a conserved sex determination gene in many Diptera, including the major agricultural pest Ceratitis capitata, it is a promising candidate for the creation of a conditional sex conversion strategy in this Tephritid. Here, CRISPR/Cas9 homology-directed repair was used to induce the D. melanogaster-specific tra2ts SNPs in Cctra2. 100% female to male conversion was successfully achieved in flies homozygous for the tra2ts2 mutation. However, it was not possible, to identify a permissive temperature for the mutation allowing the rearing of a tra2ts2 homozygous line, as lowering the temperature below 18.5 °C interferes with regular breeding of the flies.

The p53 tumor suppressor protein

The p53 gene like the Rb gene, is a tumor suppressor gene, i.e., its activity stops the formation of tumors. If a person inherits only one functional copy of the p53 gene from their parents, they are predisposed to cancer and usually develop several independent tumors in a variety of tissues in early adulthood. This condition is rare, and is known as Li-Fraumeni syndrome. However, mutations in p53 are found in most tumor types, and so contribute to the complex network of molecular events leading to tumor formation.

The p53 gene has been mapped to chromosome 17. In the cell, p53 protein binds DNA, which in turn stimulates another gene to produce a protein called p21 that interacts with a cell division-stimulating protein (cdk2). When p21 is complexed with cdk2 the cell cannot pass through to the next stage of cell division. Mutant p53 can no longer bind DNA in an effective way, and as a consequence the p21 protein is not made available to act as the ‘stop signal’ for cell division. Thus cells divide uncontrollably, and form tumors.

Help with unraveling the molecular mechanisms of cancerous growth has come from the use of mice as models for human cancer, in which powerful ‘gene knockout’ techniques can be used. The amount of information that exists on all aspects of p53 normal function and mutant expression in human cancers is now vast, reflecting its key role in the pathogenesis of human cancers. It is clear that p53 is just one component of a network of events that culminate in tumor formation.

Best DNA Tests for Health and Longevity

Has anyone here done a DNA test for longevity? I’m curious if you have any experiences with specific companies you can share. I researched 7 different big ones and am trying to decide which to go with.


Note: This is the second in our series of posts about the best DNA tests for health and longevity. To better understand the basics of DNA and the different types of DNA tests on the market please go back and read the first piece on The Benefits of Genetic Testing for Longevity.

Affiliate Disclaimer: Longevity Advice is reader-supported. When you buy using links on our site, we may earn commissions.

Getting a DNA test just to discover your ancestry is like buying a sports car just to drive it on 25 MPH roads to pick up groceries.

Seeing the Future: Longevity Research and Glaucoma (Video)

Dr David Sinclair (Harvard) : “I want to mention one thing that nobody except the insiders would know, is that I was at a conference a couple weeks ago with all 15 of us talking about this reprogramming work, and a lot of it is not published yet. I’ve seen things that make my head spin, the ability to turn back aging in a whole animal,…”


On October 27, 2020, Glaucoma Research Foundation presented the 2020 Weston Lecture featuring a talk by world-renowned Harvard Medical School genetics researcher and best-selling author David Sinclair, PhD, AO discussing longevity research and glaucoma.

PerkinElmer snaps up CRISPR provider Horizon Discovery in $383M deal

PerkinElmer has moved to expand its life sciences portfolio with CRISPR and gene editing offerings by snapping up the cell engineering specialist Horizon Discovery.

The $383 million, all-cash deal will add gene modulation tools that—in combination with its own work in applied genomics solutions—aims to provide next-generation research tools and the customized cell lines necessary for developers of new targeted therapies, and broaden PerkinElmer’s partnership work with academic researchers and the biopharma industry.

The Cambridge, U.K.-based Horizon, with about 400 employees worldwide with offices in the U.S. and Japan, provides genetic base editing technologies for living cell models using CRISPR reagents, as well as gene modulation products using RNA interference methods.

Melding biology and physical sciences yields deeper understanding of cancer

In a review published in the journal *Science*, Jain and Steele Laboratories colleagues Hadi T. Nia, PhD, and Lance L. Munn, PhD, describe four distinct physical hallmarks of cancer that affect both cancer cells and the tumor microenvironment, contributing to both tumor growth and the development of resistance to powerful cancer drugs.

One widely accepted model of cancer holds that a normal cell goes rogue because of genetic mutations or an environmental insult. In this model, the altered cell starts replicating out of control and takes over normal tissues, displaying eight hallmarks that include the ability to promote and sustain the growth of tumors, evade immune system attempts to suppress growth, stimulate blood flow to tumors and both invade local tissues and metastasize (spread) elsewhere in the body.

But this model fails to take into account how physical processes affect tumor progression and treatment, say the authors. In addition to the aforementioned eight biological hallmarks of cancer proposed by Robert Weinberg, PhD, from MIT, and Douglas Hanahan, PhD, from the Swiss Federal Institute of Technology in Lausanne, Jain and colleagues propose adding four distinct physical hallmarks that capture the biomechanical abnormalities in tumors: elevated solid stress; elevated interstitial fluid pressure; increased stiffness and altered material properties; and altered tissue micro-architecture.

Three decades of research in the Steele Laboratories led to the discovery and clinical translation of the first two hallmarks. “Solid stresses are created as proliferating and migrating cells push and stretch solid components of the surrounding tissue. They are large enough to compress blood and lymphatic vessels in and around tumors, impairing blood flow and the delivery of oxygen, drugs and immune cells,” Jain says.

Elevated interstitial fluid pressure is caused by abnormally permeable blood vessels in tumors leaking blood plasma into tissues surrounding the tumor, and by insufficient drainage of lymphatic fluid. The interstitial fluid carries various growth factors with it, causing edema (swelling), elution (release) of drugs and growth factors, and facilitating cancer invasion of local and distant tissues.

Increased stiffness is caused by the deposition of cellular matrix (scaffolding) and remodeling of tissues. This stiffness has traditionally been used as a diagnostic marker for tumor growth, and more recently it has come to be recognized as a marker for prognosis. Increased stiffness activates signaling pathways that promote proliferation, invasiveness and metastasis of cancer cells, Jain explains.

“Finally, when normal tissue architecture is disrupted by cancer growth and invasion, micro-architecture is altered,” he says. “Stromal (supporting) cells, cancer cells and extracellular matrix adopt new organization. This changes the interactions between an individual cell and its surrounding matrix and cells, which affects signaling pathways associated with invasion and metastasis.”

Scientists have reversed some signs of aging in a study on mice

Mice who ate a diet high in fat and cholesterol were more likely to see their hair turn from black to white and experience hair loss. The diet also appeared to cause inflammation of the skin.

In the first stage of the study, the researchers genetically modified mice to develop atherosclerosis, a condition in which fat deposits form in the arteries.

They then fed mice either a Western diet high in fat and cholesterol or untreated rat chow from the age of 12 to 20 weeks. As expected, the mice who consumed the Western diet saw their hair turn white and fall out, and develop skin lesions. And the longer the mice ate the diet, the worse their symptoms became. By week 36, three quarters of the animals had skin lesions.

/* */