Toggle light / dark theme

A research team has unveiled a crucial mechanism that helps regulate DNA damage repair, with important implications for improving cancer treatment outcomes.

The result was published in Cell Death & Differentiation. The team was led by Professor Zhao Guoping at the Hefei Institutes of Physical Science of the Chinese Academy of Sciences.

The efficacy of radiotherapy is largely limited by the DNA damage repair capacity of tumor cells. When ionizing radiation induces DNA double-strand breaks—the primary lethal damage—tumor cells often exhibit abnormal overexpression of DNA repair proteins, establishing a robust damage response system that drives clinical radioresistance. To address this challenge, the team deciphered the regulatory network of epigenetic modifications in DNA damage repair.

Will a child who’s evaluated for autism later develop an intellectual disability? Can this be accurately predicted? Early-childhood experts in Quebec say they’ve have come up with a better way to find out.

In a study of 5,633 children drawn from three North American cohorts, clinician-researchers affiliated with Université de Montréal developed a new predictive model that combines a wide range of genetic variants with data on each stage of a young child’s development.

Their goal? To obtain reliable information as early as possible to predict the children’s developmental trajectory and thus offer more proactive support to those who may need it—namely, parents trying to better understand and anticipate their child’s needs.

A new way to deliver disease-fighting proteins throughout the brain may improve the treatment of Alzheimer’s disease and other neurological disorders, according to University of California, Irvine scientists. By engineering human immune cells called microglia, the researchers have created living cellular “couriers” capable of responding to brain pathology and releasing therapeutic agents exactly where needed.

The study, published in Cell Stem Cell, demonstrates for the first time that derived from induced pluripotent stem cells can be genetically programmed to detect disease-specific brain changes—like in Alzheimer’s disease—and then release enzymes that help break down those toxic proteins. As a result, the cells were able to reduce inflammation, preserve neurons and synaptic connections, and reverse multiple other hallmarks of neurodegeneration in mice.

For patients and families grappling with Alzheimer’s and related diseases, the findings offer a hopeful glimpse at a future in which microglial-based cell therapies could precisely and safely counteract the ravages of neurodegeneration.

Most cells in the human body each contain about six feet of DNA. Yet the nucleus, where DNA is coiled, is no larger than a single speck of dust. Despite its density, DNA is not a tangled ball of yarn. It is organized into intricate layers of loops that fold and unfold in response to cues from the cell.

Scientists know that the three-dimensional shape of DNA is important. This long helical thread is peppered with genes that are translated into proteins to drive cellular activity. And the structure of the —those layers of loops—determines which genes are active at any given time.

How the three-dimensional structure of the genome is maintained, however, is less clear. Structural changes and abnormalities are associated with many diseases, such as cancer and developmental disorders. Identifying what controls genome structure could yield targets for treatment.

Living to 100 may sound like a dream, but thanks to advancements in anti-aging and longevity research, it’s becoming more of a realistic goal than ever before. While genetics play a role, experts say your daily habits have a major impact on how gracefully—and healthfully—you age. From diet and movement to mindset and skincare, there are key lifestyle shifts and science-backed secrets that can help slow the aging process, boost vitality, and support a longer, more vibrant life.

Robert Love, a neuroscientist, shared three anti-aging and longevity secrets you should know about if you want to “slow down aging” and “even help reverse aging.” According to him, prioritizing sleep, avoiding ultra-processed foods, and taking healthy supplements are some of the best options. Read on to learn more.

Prioritizing sleep is one of the most powerful (and underrated) anti-aging tools you have. During deep sleep, your body goes into repair mode—producing growth hormone, regenerating cells, and fixing damage caused by stress and environmental factors. This nightly “reset” helps keep your skin, organs, and even brain functioning optimally.

Human brains make synaptic connections throughout much of childhood, and the brain’s plasticity enables humans to slowly wire them based upon experiences, contrary to how chimpanzees develop. Humans and chimpanzees share 98.8% of the same genes, but scientists have been looking for what drives the unique cognitive and social skills of humans.

A new study, which was published today in Genome Research, that examined brain samples from humans, chimpanzees, and macaques, collected from birth up to the end of their life span, has found some key differences between the expression of genes that control the development and function of synapses, which are the connections between neurons through which information flows.

Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD

Discount Links/Affiliates:
Blood testing (where I get the majority of my labs): https://www.ultalabtests.com/partners/michaellustgarten.

At-Home Metabolomics: https://www.iollo.com?ref=michael-lustgarten.
Use Code: CONQUERAGING At Checkout.

Clearly Filtered Water Filter: https://get.aspr.app/SHoPY

Epigenetic, Telomere Testing: https://trudiagnostic.com/?irclickid=U-s3Ii2r7xyIU-LSYLyQdQ6…M0&irgwc=1
Use Code: CONQUERAGING

NAD+ Quantification: https://www.jinfiniti.com/intracellular-nad-test/

Despite major therapeutic advances in the treatment of acute lymphoblastic leukemia (ALL), resistances and long-term toxicities still pose significant challenges. Cyclins and their associated cyclin-dependent kinases are one focus of cancer research when looking for targeted therapies. We discovered cyclin C to be a key factor for B-cell ALL (B-ALL) development and maintenance. While cyclin C is not essential for normal hematopoiesis, CcncΔ/Δ BCR::ABL1 + B-ALL cells fail to elicit leukemia in mice. RNA sequencing experiments revealed a p53 pathway deregulation in CcncΔ/Δ BCR::ABL1 + cells resulting in the inability of the leukemic cells to adequately respond to stress. A genome-wide CRISPR/Cas9 loss-of-function screen supplemented with additional knock-outs unveiled a dependency of human B-lymphoid cell lines on CCNC. High cyclin C levels in B-cell precursor (BCP) ALL patients were associated with poor event-free survival and increased risk of early disease recurrence after remission. Our findings highlight cyclin C as a potential therapeutic target for B-ALL, particularly to enhance cancer cell sensitivity to stress and chemotherapy.

The Philadelphia (Ph) chromosome, a product of the reciprocal translocation t(9;22)(q34;q11) between chromosomes 9 and 22, encodes the BCR::ABL1 fusion oncoprotein.1 The constitutively active BCR::ABL1 tyrosine kinase is a hallmark of chronic myeloid leukemia (CML) and drives a subset of acute lymphoblastic leukemia (ALL). The incidence of Ph positive (Ph+) ALL correlates with age, from only 3% in pediatric ALL to around 25% in older adults.2 Direct targeting of the BCR::ABL1 kinase with tyrosine kinase inhibitors (TKI) has been a breakthrough in targeted cancer therapy. Despite efforts to counteract TKI resistance and improve safety profiles, refractory BCR::ABL1+ leukemia, as well as toxicities and long-term side effects of TKI, present particular therapeutic challenges.3–5

The clinical relevance of cyclins and their associated cyclin-dependent kinases (CDK) has been a major focus of research for several years. Cyclin-CDK complexes do not only drive the cell cycle, but are also important players in various other cellular processes including transcriptional and epigenetic regulation, metabolism or stem cell self-renewal.6 In line with their importance in different pathways, cyclin-CDK complex dysregulation is implicated in many different types of cancer.7

Scientists from Mass General Brigham and Beth Israel Deaconess Medical Center have developed a novel gene editing tool called STITCHR. Unlike traditional CRISPR, STITCHR inserts entire genes at precise locations, minimizing unintended mutations. This gene editing tool simplifies use and offers potential as a one-time treatment for genetic disorders.

The technology uses retrotransposons, naturally occurring “jumping genes” found in all eukaryotic organisms, which can move and integrate into genomes. Using computational screening, the researchers identified and reprogrammed a specific retrotransposon to work with the nickase enzyme from CRISPR, forming the complete STITCHR system that allows a precise, seamless gene insertion into the genome.

STITCHR offers the potential to replace or supplement entire genes, creating a more universal treatment option for various genetic diseases. The research team is now working to improve its efficiency and move it toward clinical use. Their study, published in Nature, highlights how insights from basic cellular biology can drive innovation in genetic medicine and lead to new therapeutic tools.