Toggle light / dark theme

New software tool provides a way for safer design of genome editing

A team of researchers has developed a software tool called DANGER (Deleterious and ANticipatable Guides Evaluated by RNA-sequencing) analysis that provides a way for the safer design of genome editing in all organisms with a transcriptome. For about a decade, researchers have used the CRISPR technology for genome editing. However, there are some challenges in the use of CRISPR. The DANGER analysis overcomes these challenges and allows researchers to perform safer on-and off-target assessments without a reference genome. It holds the potential for applications in medicine, agriculture, and biological research.

Their work is published in the journal Bioinformatics Advances on August 23, 2023.

Genome editing, or gene editing, refers to technologies that allow researchers to change the genomic DNA of an organism. With these technologies, researchers can add, remove or alter genetic material in the genome.

A Scoring System That Links Gut Microbiome Interactions & Disease

The human gut microbiome has a crucial connection to our health and well-being, but it is a complex entity made up of many different organisms, which all have an effect on one another. The hundreds of different microbial species in the gut metabolize the foods we consume in different ways, and the metabolites that microbes generate are often then consumed by other microbes. It’s been suggested that the more than half of the stuff that is eaten by gut microbes are byproducts of other gut microbes. This interdependence can have profound implications for the gut microbiome, and some species become totally reliant on the presence of others.

Scientists are still learning about the various characteristics of a healthy human gut microbiome, but there are certain species that tend to be present. High diversity in the microbiome is also typically associated with good health. While some microbes can fill in the gaps if other important ones are missing, some species can’t be substituted.

Newly Found Pandoraviruses Hint at a Fourth Branch of Life

This exemplary virus makes its own genes which many have theories say that it could be a direct relationship to the sorta alien ant farm we are currently in on earth. That maybe it is a clue that viruses started all life from a sorta panspermia whether it was from meteorites or even direct gene engineering from aliens this virus gives us a clue even to our evolutionary processes that we could even become aliens someday.


Pandoraviruses, the largest viruses ever found, are shaking up the tree of life. Could they and other abnormally large viruses belong to a fourth branch of life separate from Bacteria, Archaea, and Eukaryotes?

Study shows that attractor dynamics in the monkey prefrontal cortex reflect the confidence of decisions

When humans make decisions, such as picking what to eat from a menu, what jumper to buy at a store, what political candidate to vote for, and so on, they might be more or less confident with their choice. If we are less confident and thus experience greater uncertainty in relation to their choice, our choices also tend to be less consistent, meaning that we will be more likely to change our mind before reaching a final decision.

While neuroscientists have been exploring the neural underpinnings decision-making for decades, many questions are still unanswered. For instance, how neural network computations support decision-making under varying levels of certainty remain poorly understood.

Researchers at the National Institute of Mental Health in Bethesda, Maryland recently carried out a study on aimed at better understanding the neural network dynamics associated with decision confidence. Their paper, published in Nature Neuroscience, offers evidence that energy landscapes in the can predict the consistency of choices made by monkeys, which is in turn a sign of the animals’ confidence in their decisions.

Researchers develop organic nanozymes suitable for agricultural use

Nanozymes are synthetic materials that mimic the properties of natural enzymes for applications in biomedicine and chemical engineering. Historically, they are generally considered too toxic and expensive for use in agriculture and food science. Now, researchers from the University of Illinois Urbana-Champaign have developed a nanozyme that is organic, non-toxic, environmentally friendly, and cost effective.

In a newly published paper, they describe its features and its capacity to detect the presence of glyphosate, a common agricultural herbicide. Their goal is to eventually create an user-friendly test kit for consumers and agricultural producers.

“The word nanozyme is derived from nanomaterial and enzyme. Nanozymes were first developed about 15 years ago, when researchers found that may perform catalytic activity similar to natural enzymes (peroxidase),” explained Dong Hoon Lee, a doctoral student in the Department of Agricultural and Biological Engineering (ABE), part of the College of Agricultural, Consumer and Environmental Sciences (ACES) and The Grainger College of Engineering at U. of I.

How a scientist looking to prove his food wasn’t fresh discovered radioactive tracers and won a Nobel Prize

Each October, the Nobel Prizes celebrate a handful of groundbreaking scientific achievements. And while many of the awarded discoveries revolutionize the field of science, some originate in unconventional places. For George de Hevesy, the 1943 Nobel Laureate in chemistry who discovered radioactive tracers, that place was a boarding house cafeteria in Manchester, U.K., in 1911.

De Hevesey had the sneaking suspicion that the staff of the boarding house cafeteria where he ate at every day was reusing leftovers from the dinner plates – each day’s soup seemed to contain all of the prior day’s ingredients. So he came up with a plan to test his theory.

How the hippocampus distinguishes true and false memories

Let’s say you typically eat eggs for breakfast but were running late and ate cereal. As you crunched on a spoonful of Raisin Bran, other contextual similarities remained: You ate at the same table, at the same time, preparing to go to the same job. When someone asks later what you had for breakfast, you incorrectly remember eating eggs.

This would be a real-world example of a false . But what happens in your brain before recalling eggs, compared to what would happen if you correctly recalled cereal?

In a paper published in Proceedings of the National Academy of Sciences, University of Pennsylvania neuroscientists show for the first time that in the human hippocampus differ immediately before recollection of true and false memories. They also found that low-frequency activity in the hippocampus decreases as a function of contextual similarity between a falsely recalled word and the target word.

/* */