Toggle light / dark theme

Circa 2019


Domestic cats (Felis catus) and dogs (Canis familiaris) are the most popular companion animals; worldwide, over 600 million cats live with humans1, and in some countries their number equals or exceeds the number of dogs (e.g., Japan: dogs: 8,920,000, cats: 9,526,000)2,3. Cats started to cohabit with humans about 9,500 years ago4; their history of cohabitation with humans is shorter than that of dogs5, and they have been domesticated by natural selection, not by artificial selection6,7,8. Despite these differences in their process of domestication compared to that of dogs, cats too have developed behaviours related to communication with humans; for example, for human listeners, the vocalisations of domestic cats are more comfortable than those of African wild cats (Felis silvestris lybica)9. In addition, purring has different acoustical components during solicitation of foods than at other times, and humans perceive such solicitation purrs as more urgent and unpleasant than non-solicitation purrs10. These facts clearly indicate that domestic cats have developed the ability to communicate with humans and frequently do so; Bradshaw8 suggested that this inter-species communicative ability is descended from intra-species communicative ability.

Researchers have only recently begun to investigate cats’ ability to communicate with humans. Miklósi et al. showed that cats are able to use the human pointing gesture as a cue to find hidden food, similarly to dogs11. The researchers also suggested that cats do not gaze toward humans when they cannot access food, unlike dogs. However, a recent study revealed that cats show social referencing behaviour (gazing at human face) when exposed to a potentially frightening object, and to some extent cats changed their behaviour depending on the facial expression of their owner (positive or negative)12. Cats in food begging situations can also discriminate the attentional states of humans who look at and call to them13. In addition, Galvan and Vonk demonstrated that cats were modestly sensitive to their owner’s emotions14, and other research has indicated that cats’ behaviour is influenced by human mood15,16. Further, cats can discriminate their owner’s voice from a stranger’s17. This research evidence illustrates that domestic cats have the ability to recognize human gestural, facial, and vocal cues.

In contrast to cats, numerous research studies have shown the ability of domestic dogs to communicate with humans. Dogs are skilful at reading human communicative gestures, such as pointing (reviewed in Miklósi & Soproni18). Dogs can differentiate human attentional states19,20,21,22 and distinguish human smiling faces from blank expressions23. They are also capable of using some human emotional expressions to help them find hidden food and fetch objects24,25.

Pigs live in modular pens in barns with airy lattice-like facades on this Croatian farm designed by architecture studio Skroz.

Skroz designed the Eco Pig Farm for Sin Ravnice, one of the first professional breeders dedicated to the long-neglected Slavonian Black pig, which is indigenous to the Slavonia region of eastern Croatia.

The pig is prized for its bacon and the local specialty sausage “kulen”, but its numbers dwindled during the 20th century as factory farming increased, because the breed requires access to pasture.

Josh SeehermanI don’t think he’s wrong.

Art ToegemannIt’s adjusting to users sharing a password.

Shubham Ghosh Roy shared a link.


At the interface between chemistry and physics, the process of crystallization is omnipresent in nature and industry. It is the basis for the formation of snowflakes but also of certain active ingredients used in pharmacology. For the phenomenon to occur for a given substance, it must first go through a stage called nucleation, during which the molecules organize themselves and create the optimal conditions for the formation of crystals. While it has been difficult to observe pre-nucleation dynamics, this key process has now been revealed by the work of a research team from the University of Geneva (UNIGE). The scientists have succeeded in visualizing this process spectroscopically in real time and on a micrometric scale, paving the way to the design of safer and more stable active substances. These results can be found in the Proceedings of the National Academy of Sciences (PNAS).

The processing of food at high volumes has traditionally posed many problems for robots and cobots, and has lagged behind other industries. Foods have a variety of shapes and sizes and can be delicate in nature. These variables can be challenging when a robot tries to grasp an item. The delicate often has strict requirements for quality, making them even harder to grasp (think: strawberries).

Non-automotive robot orders now represent 58% of the North American total. Unit sales to the food and consumer goods sector alone increased 29% in 2021 over 2020, according to Association for Advancing Automation (A3).

“More industries recognized that robotics could help reverse productivity declines and fill repetitive jobs human workers don’t want. It is no longer a choice whether to deploy robots and automation,” says Jeff Burnstein, president of A3. “It’s now an absolute imperative. As we’ve long believed—and users continue to confirm—robots help companies compete, ultimately creating more jobs to handle their growth.”

For those not paying attention, Tesla has been unable to build cars in China for a few weeks as China shuts down due to a zero Covid policy. Here’s a short video about life in China:


China’s financial hub Shanghai has started easing its lockdown in some areas on Monday, despite reporting a record high of more than 25,000 new Covid-19 infections, as authorities sought to get the city moving again after more than two weeks.

Pressure has been building on authorities in the country’s most populous city, and one of its wealthiest, from residents growing increasingly frustrated as the curbs dragged on, leaving some struggling to find enough food and medicine. Footage circulating online showed people screaming from their balconies, with the person filming claiming it was because people had grown tired of China’s strict lockdown rules.

Milling rice to separate the grain from the husks produces about 100 million tons of rice husk waste globally each year. Scientists searching for a scalable method to fabricate quantum dots have developed a way to recycle rice husks to create the first silicon quantum dot (QD) LED light. Their new method transforms agricultural waste into state-of-the-art light-emitting diodes in a low-cost, environmentally friendly way.

The research team from the Natural Science Center for Basic Research and Development, Hiroshima University, published their findings on January 28, 2022, in the American Chemical Society journal ACS Sustainable Chemistry & Engineering.

“Since typical QDs often involve toxic material, such as cadmium, lead, or other , have been frequently deliberated when using nanomaterials. Our proposed process and for QDs minimizes these concerns,” said Ken-ichi Saitow, lead study author and a professor of chemistry at Hiroshima University.

We produce more than 380 million tonnes of plastic every year, with over 8 million tons of plastic waste escaping into our oceans. Scientists have come up with a creative solution to address this growing plastic problem, and the best thing is that their solution smells and tastes divine.

By getting help from a genetically modified bacteria, a team of researchers at the University of Edinburgh was able to turn plastic bottles into vanilla flavoring. This is the first time a valuable chemical has been achieved from plastic waste.

The study, published in the journal Green Chemistry, explains how bacteria may be used to transform plastic into vanillin, a compound that is used not just in food, but also in cosmetics and pharmaceuticals.