Toggle light / dark theme

Nuro, a Softbank-backed developer of street-legal autonomous, electric delivery vehicles, has struck a long-term partnership with Uber to use its toaster-shaped micro-vans to haul food orders, groceries and other goods to customers in Silicon Valley and Houston using the Uber Eats service starting this year.

People using the Uber Eats app in Houston and Mountain View, California (where Nuro is based) will be able to order deliveries using the new autonomous service this fall, with plans to expand the program to other parts of the San Francisco Bay Area in the months ahead, the companies said.


The SoftBank-backed developer of street-legal autonomous, electric vehicles, has a long-term partnership with Uber to use its toaster-shaped micro-vans to haul food orders, groceries and other goods in Silicon Valley and Houston.

A groundbreaking mathematical equation that could transform medical procedures, natural gas extraction, and plastic packaging production in the future has been discovered.

The new equation, developed by scientists at the University of Bristol, indicates that diffusive movement through permeable material can be modeled exactly for the very first time. It comes a century after world-leading physicists Albert Einstein and Marian von Smoluchowski derived the first diffusion equation, and marks important progress in representing motion for a wide range of entities from microscopic particles and natural organisms to man-made devices.

Until now, scientists looking at particle motion through porous materials, such as biological tissues, polymers, various rocks and sponges have had to rely on approximations or incomplete perspectives.

According to the researcher, the same technology could be applied to beetles and cicadas as well.

It’s a fun and futuristic vision: an army of remotely controlled cyborg insects that can infiltrate hard to reach locations or monitor crops.

But scientists will have to advance the tech carefully — nobody wants to risk a cyborg cockroach uprising.

This will create new types of jobs especially in software industries.


ANN ARBOR, Mich.—()—For the third-straight quarter, robot sales in North America hit a record high, driven by a resurgence in sales to automotive companies and an ongoing need to manage increasing demand to automate logistics for e-commerce. According to the Association for Advancing Automation, of the 12,305 robots sold in Q2 2022, 59% of the orders came from the automotive industry with the remaining orders from non-automotive companies largely in the food & consumer goods industry, which saw a 13% increase in unit orders over the same period, April through June, in 2021.

Robot sales hit new record in North America for 3rd straight quarter: Includes renewed surge in #automotive and continued uptake of #robotics and #automation in food and consumer goods industries driven by #ecommerce, industry group @a3automate reports. Tweet this

“While automotive entities have long been the frontrunner in deploying robotics and automation, the last few years have seen food & consumer goods, life sciences and other industries grow at even higher rates,” said A3 President Jeff Burnstein. “While this quarter shows a marked shift back to historic norms with more robots going to automotive than to any other industry, the continued growth of robotics in food & consumer goods companies especially demonstrates the ongoing need to automate warehouse logistics for handling the exploding growth of e-commerce. We’re excited to share the latest on robots in the logistics space at our upcoming Autonomous Mobile Robots & Logistics Week in Boston in October.”

In a recent publication in the journal Advanced Materials, a team of physicists and chemists from TU Dresden presents an organic thin-film sensor that describes a completely new way of identifying the wavelength of light and achieves a spectral resolution below one nanometer. As integrated components, the thin-film sensors could eliminate the need for external spectrometers in the future. A patent application has already been filed for the novel technology.

Spectroscopy comprises a group of experimental methods that decompose radiation according to a specific property, such as wavelength or mass. It is considered one of the most important analytical methods in research and industry. Spectrometers can determine colors (wavelengths) of light sources and are used as sensors in various applications, such as medicine, engineering, food industry and many more. Commercially available instruments are usually relatively large and very expensive. They are mostly based on the principle of the prism or grating: light is refracted and the wavelength is assigned according to the angle of refraction.

At the Institute for Applied Physics (IAP) and the Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) of the TU Dresden, such sensor components based on organic semiconductors have been researched for years. With the spin-offs Senorics and PRUUVE, two technologies have already been developed towards market maturity. Now, researchers at the IAP and IAPP, in cooperation with the Institute of Physical Chemistry, have developed a thin-film sensor that describes a completely new way of identifying the and, due to its small size and cost, has clear advantages over commercially available spectrometers.

But blueberry land and other parcels of rural Maine are being increasingly eyed for housing development, and Sweetland feels the wild blueberry sector is under pressure, especially when blueberry market prices drop.

He hopes that a new “crop” growing in tandem with berries could help boost the local industry and preserve farmland. That would be solar panels that have been installed across 11 acres of the land where Sweetland farms blueberries in Rockport, Maine.

The University of Maine is studying this example of dual-use agrivoltaics. The solar installation was developed by the Boston-based solar developer BlueWave, and it is owned by the company Navisun, which makes lease payments to the landowner. Sweetland tends, harvests and sells the blueberries, and shares profits with the landowner.

Summary: A new mouse study provides clues as to how the brain processes sensory information from internal organs, revealing feedback from organs activates different clusters of neurons in the brain stem.

Source: Harvard.

Most of us think little of why we feel pleasantly full after eating a big holiday meal, why we start to cough after accidentally inhaling campfire smoke, or why we are hit with sudden nausea after ingesting something toxic. However, such sensations are crucial for survival: they tell us what our bodies need at any given moment so that we can quickly adjust our behavior.