Toggle light / dark theme

Scientists today are quick to point out that they are still basing their models on life as we know it: Carbon-based and reliant on organic compounds and water…


In 2001, the first author (S.N.) led the publication of a book entitled “Geochemistry and the origin of life” in collaboration with Dr. Andre Brack aiming to figure out geo- and astro-chemical processes essential for the emergence of life. Since then, a great number of research progress has been achieved in the relevant topics from our group and others, ranging from the extraterrestrial inputs of life’s building blocks, the chemical evolution on Earth with the aid of mineral catalysts, to the fossilized records of ancient microorganisms. Here, in addition to summarizing these findings for the origin and early evolution of life, we propose a new hypothesis for the generation and co-evolution of photosynthesis with the redox and photochemical conditions on the Earth’s surface. Besides these bottom-up approaches, we introduce an experimental study on the role of water molecules in the life’s function, focusing on the transition from live, dormant, and dead states through dehydration/hydration. Further spectroscopic studies on the hydrogen bonding behaviors of water molecules in living cells will provide important clues to solve the complex nature of life.

Keywords: building blocks, biopolymers, polymerization, extraterrestrial inputs, mineral surfaces, metabolism, photosynthesis, water, hydrogen bonding (9: 3–10)

Life is generally characterized by the following three functions [1]: metabolism: the ability to capture energy and material resources, staying away from thermodynamic equilibrium, replication: the ability to process and transmit heritable information to progeny, and compartmentalization: the ability to keep its components together and distinguish itself from the environment. These functions are operated by biopolymers such as proteins, DNAs, RNAs, and phospholipids ( Figure 1 ). Proteins are made of amino acids linked together by peptide bonds. DNAs and RNAs are made of nucleotides (composed of (deoxy)ribose and nucleobases) bound by phosphodiester linkages. Phospholipids are made of two fatty acids esterified to a glycerol phosphate molecule.

Summary: Study reveals a new role for serotonin in the development of the human neocortex. Serotonin acts cell-extrinsically as a growth factor for basal progenitors in the developing neocortex. Researchers report placenta-driven serotonin likely contributed to the evolutionary expansion of the neocortex in humans.

Source: Max Planck Society

During human evolution, the size of the brain increased, especially in a particular part called the neocortex. The neocortex enables us to speak, dream and think. In search of the causes underlying neocortex expansion, researchers at the Max Planck Institute of Molecular Cell Biology and Genetics in Dresden, together with colleagues at the University Hospital Carl Gustav Carus Dresden, previously identified a number of molecular players. These players typically act cell-intrinsically in the so-called basal progenitors, the stem cells in the developing neocortex with a pivotal role in its expansion.

Microsoft will be using Starlink broad band for their cloud services.


SpaceX President Gwynne Shotwell announced today the company will collaborate with Microsoft to connect Starlink broadband internet satellites with Microsoft’s Azure cloud service. “Our new partnership with SpaceX Starlink will provide high-speed, low-latency satellite broadband for the new Azure Modular Datacenter (MDC),” Microsoft detailed in a press release. “SpaceX is of course the name that people immediately think of when they think of innovation and the evolution that’s occurring to bring space technology into the 21st century,” said Tom Keane, Microsoft’s corporate vice president of Azure Global.

Starlink is SpaceX’s plan to create an internet-beaming satellite constellation in low Earth orbit to provide service globally. Primarily focused in areas where internet connection is unreliable and nonexistent. To date, SpaceX has deployed a bit over 800 satellites to orbit out of the thousands that will comprise the Starlink network. —“The collaboration that we’re announcing today will allow us to work together to deliver new offerings for both the public and the private sector to deliver connectivity through Starlink for use on Azure,” Shotwell said in a video announcement (shown below). “Where it makes sense, we will work with [Microsoft]: co-selling to our mutual customers, co-selling to new enterprise and future customers.”

Shotwell shared that over the last few months SpaceX and Microsoft have been testing the software and hardware needed to connect the Starlink satellites in orbit to the Azure cloud service. -“So, I think that’s worked out really well,” she said. The partnership will enable Microsoft to offer its cloud service in remote areas around the planet. “We can connect via satellite lengths any element on the Earth to another point on the Earth, which I think goes extremely well with the technologies you are trying to build out…” Shotwell told Keane.

Just like humans, microbes have equipped themselves with tools to recognize and defend themselves against viral invaders. In a continual evolutionary battle between virus and host, CRISPR-Cas act as a major driving force of strain diversity in host-virus systems.

A new study led by Professor of Life Sciences Shai Pilosof (Ben-Gurion University of the Negev, Beer-Sheva, Israel), Professor of Microbiology Rachel Whitaker (University of Illinois Urbana-Champaign), and Professor of Ecology and Evolution Mercedes Pascual (University of Chicago) highlights the role of diversified immunity in mediating -pathogen interactions and its eco-evolutionary dynamics. The study also included Professor of Bioengineering and Bliss Faculty Scholar Sergei Maslov (University of Illinois Urbana-Champaign), Sergio A. Alcal´a-Corona (University of Chicago), and Ph.D. graduate students Ted Kim and Tong Wang (University of Illinois Urbana-Champaign).

Their findings were reported in the journal Nature Ecology & Evolution.

A team of researchers affiliated with a host of institutions in Korea and one in Estonia has found a way to use math to study paintings to learn more about the evolution of art history in the western world. In their paper published in Proceedings of the National Academy of Sciences, the group describes how they scanned thousands of paintings and then used mathematical algorithms to find commonalities between them over time.

Beauty, as the saying goes, is in the eye of the beholder—and so it is also with art. Two people looking at the same can walk away with vastly different impressions. But art also serves, the researchers contend, as a barometer for visualizing the emotional tone of a given society. This suggests that the study of art history can serve as a channel of sorts—illuminating societal trends over time. The researchers further note that to date, most studies of art history have been qualitatively based, which has led to interpretive results. To overcome such bias, the researchers with this new effort looked to mathematics to see if it might be useful in uncovering features of paintings that have been overlooked by human scholars.

The work involved digitally scanning 14,912 paintings—all of which (except for two) were painted by Western artists. The data for each of the paintings was then sent through a mathematical that drew partitions on the based on contrasting colors. The researchers ran the algorithm on each painting multiple times, each time creating more partitions. As an example, the first run of the algorithm might have simply created two partitions on a painting—everything on land, and everything in the sky. The second might have split the land into buildings in one partition and farmland in another.

The research, out today from the University of Colorado Anschutz Medical Campus and published in * Evolution and Human Behavior*, presents a hypothesis supporting a role for fructose, a component of sugar and high fructose corn syrup, and uric acid (a fructose metabolite), in increasing the risk for these behavioral disorders.

Johnson outlines research that shows a foraging response stimulates risk taking, impulsivity, novelty seeking, rapid decision making, and aggressiveness to aid the securing of food as a survival response. Overactivation of this process from excess sugar intake may cause impulsive behavior that could range from ADHD, to bipolar disorder or even aggression.” “Johnson notes, “We do not blame aggressive behavior on sugar, but rather note that it may be one contributor.”” “The identification of fructose as a risk factor does not negate the importance of genetic, familial, physical, emotional and environmental factors that shape mental health,” he adds.


Huh, want to know more.

“New research suggests that conditions such as attention deficit hyperactivity syndrome (ADHD), bipolar disorder, and even aggressive behaviors may be linked with sugar intake, and that it may have an evolutionary basis.

One of the greatest mysteries in our Universe is right here on our own doorstep. No, closer — it’s in every fibre of our being.

At least 3.7 billion years ago, a few simple molecules worked together to create something new. Then a few more. And, somehow, these snowballing combinations eventually produced the first very basic living organisms that would evolve and branch out to become all life on Earth.

We don’t know the order it happened in; heck, we don’t even know when or where it happened. But new research is showing us the possibilities.

Latest wing testing and the evolution of our aerodynamic control at speed with the #JetSuit never stops at Gravity. Here with the awesome Benjamin Kenobi chasing with his Inspire drone🤘

LINKS
SHOP: http://www.gravity.co/mobile-shop/
Instagram: https://www.instagram.com/takeongravity/?hl=en
Facebook: http://www.facebook.com/takeongravity/
LinkedIn: https://www.linkedin.com/in/richardbrowninggravity/
Web: http://www.gravity.co
TED 2017 talk: http://go.ted.com/richardbrowning

BACKGROUND
With a rich family history in Aviation, former Oil Trader & Royal Marines Reservist, Richard Browning, founded pioneering Aeronautical Innovation company, Gravity Industries in March 2017 to launch human flight into an entirely new era.

The Gravity #JetSuit uses over 1000bhp of Jet Engine power combined with natural human balance to deliver the most intense and enthralling spectacle, often likened to the real life Ironman.

The number of mutations that can contribute to aging may be significantly higher than previously believed, according to new research on fruit flies. The study by scientists at Linköping University, Sweden, supports a new theory about the type of mutation that can lie behind aging. The results have been published in BMC Biology.

We live, we age and we die. Many functions of our bodies deteriorate slowly but surely as we age, and eventually an organism dies. This thought may not be very encouraging, but most of us have probably accepted that this is the fate of all living creatures—death is part of life. However, those who study find it far from clear why this is the case.

“The evolution of aging is, in a manner of speaking, a paradox. Evolution causes continuous adaptation in organisms, but even so it has not resulted in them ceasing to age,” says Urban Friberg, senior lecturer in the Department of Physics, Chemistry and Biology at Linköping University and leader of the study.