Blog

Archive for the ‘engineering’ category: Page 4

Dec 1, 2024

Strain engineering approach enhances performance of 2D semiconductor-based transistors

Posted by in categories: computing, engineering

The manipulation of mechanical strain in materials, also known as strain engineering, has allowed engineers to advance electronics over the past decades, for instance enhancing the mobility of charge carriers in devices. Over the past few years, some studies have tried to devise effective strategies to manipulate strain in two-dimensional (2D) semiconductors that are compatible with existing industrial processes.

Researchers at Stanford University recently introduced a CMOS-compatible approach to engineer the (i.e., stretchiness) in monolayer semiconductor transistors.

This approach, outlined in a paper published in Nature Electronics, relies on the use of silicon nitride capping layers that can impart strain on monolayer molybdenum disulfide (MoS2) transistors integrated on silicon substrates.

Nov 29, 2024

Tiny rotating particles create vorticity in viscous fluids, yielding fascinating new behaviors

Posted by in categories: engineering, information science, mathematics, particle physics

Vorticity, a measure of the local rotation or swirling motion in a fluid, has long been studied by physicists and mathematicians. The dynamics of vorticity is governed by the famed Navier-Stokes equations, which tell us that vorticity is produced by the passage of fluid past walls. Moreover, due to their internal resistance to being sheared, viscous fluids will diffuse the vorticity within them and so any persistent swirling motions will require a constant resupply of vorticity.

Physicists at the University of Chicago and applied mathematicians at the Flatiron Institute recently carried out a study exploring the behavior of viscous fluids in which tiny rotating particles were suspended, acting as local, mobile sources of vorticity. Their paper, published in Nature Physics, outlines fluid behaviors that were never observed before, characterized by self-propulsion, flocking and the emergence of chiral active phases.

“This experiment was a confluence of three curiosities,” William T.M. Irvine, a corresponding author of the paper, told Phys.org. “We had been studying and engineering parity-breaking meta-fluids with fundamentally new properties in 2D and were interested to see how a three-dimensional analog would behave.

Nov 28, 2024

Smart Materials and Nanotechnology Engineering conf. kicks off

Posted by in categories: engineering, nanotechnology

Dr Mehdi Ghommem said that the AUS was happy to host and organise the eighth edition of the International Conference on Smart Materials and Nanotechnology, and to host more than 100 participants from 15 different countries.

Ghommem added that the social programme of the conference included plenary lectures, keynote lectures, parallel technical sessions with more than 70 presentations.

Continue reading “Smart Materials and Nanotechnology Engineering conf. kicks off” »

Nov 28, 2024

Strange Engineering Hiding in Plain Sight

Posted by in categories: biotech/medical, cyborgs, engineering, evolution

▶️ Visit https://brilliant.org/NewMind to get a 30-day free trial + 20% off your annual subscription.

This video explores fascinating engineering solutions hiding in plain sight — ingenious designs that solve complex problems through elegant simplicity. From shoes that expand when stretched to windshields with hidden patterns, discover how everyday objects incorporate remarkable engineering innovations.

Continue reading “Strange Engineering Hiding in Plain Sight” »

Nov 28, 2024

Nanopesticide delivery system made with neem seed extract improves pesticide effectiveness

Posted by in categories: chemistry, engineering, food, sustainability

Pesticides can be made more effective and environmentally friendly by improving how they stick to plant surfaces, thanks to new research led by Dr. Mustafa Akbulut, professor of chemical engineering at Texas A&M University.

Akbulut and his research group have developed an innovative pesticide delivery system called nanopesticides. These tiny technologies, developed through a collaboration between Texas A&M University’s engineering and agricultural colleges, Dr. Luis Cisneros-Zevallo, professor of Horticultural Science and Dr. Younjin Min, professor of Chemical Environ Engineering at University of California, Riverside, could change how we use pesticides.

“The U.S. is a world leader in , feeding not just our nation but much of the world. Yet we are using pesticides in a way that is simply not sustainable—with a substantial fraction not reaching its intended target,” said Akbulut. “Our research shows that by optimizing the surface chemistry of pesticide carriers, we can make these essential crop protection tools more efficient.”

Nov 27, 2024

Q&A — Information, Evolution, and intelligent Design — With Daniel Dennett

Posted by in categories: engineering, evolution, internet

How long until humans are made redundant by the evolution of technology? Is there an inherent difference between men and women’s intelligence? Daniel Dennett answers questions from the audience following his talk. Watch the main event here: • Information, Evolution, and intellige…
Subscribe for regular science videos: http://bit.ly/RiSubscRibe.

The concept of information is fundamental to all areas of science, and ubiquitous in daily life in the Internet Age. However, it is still not well understood despite being recognised for more than 40 years. In this talk, Daniel Dennett explored steps towards a unified theory of information, through common threads in evolution, learning, and engineering.

Continue reading “Q&A — Information, Evolution, and intelligent Design — With Daniel Dennett” »

Nov 26, 2024

Ed Boyden: “Synthetic Neurobiology: Optically Engineering the Brain to Augment Its Function”

Posted by in categories: computing, engineering, genetics, neuroscience, singularity

Ed Boyden is a professor at the MIT Media Lab working on the most advanced brain-computer interfacing technology currently available, optogenetics. At Singularity Summit 2009.

Nov 26, 2024

How tiny droplets can deform ice: Findings show potential for cryopreservation and food engineering

Posted by in categories: cryonics, engineering, food, life extension, particle physics

When water freezes slowly, the location where water turns into ice—known as the freezing front—forms a straight line. Researchers from the University of Twente showed how droplets that interact with such a freezing front cause surprising deformations of this front. These new insights were published in Physical Review Letters and show potential for applications in cryopreservation and food engineering techniques.

When water freezes, it is often thought of as a predictable, solid block forming layer by layer. But what happens if the progressing freezing front encounters or ? Researchers from the University of Twente have explored this question, discovering that droplets can cause surprising deformations in the way ice forms.

Nov 25, 2024

Global Photonics Engineering Contest

Posted by in categories: computing, engineering

Early Bird Opportunity in the Global Photonics Engineering Contest.
: All submissions received by 31st December 2024, will receive personalized feedback from Photon Delta engineers.

Submit your application now: https://wevlv.co/photondelta-s.

Continue reading “Global Photonics Engineering Contest” »

Nov 24, 2024

How Wastewater and Gas Flares Could Supercharge Green Hydrogen Production

Posted by in categories: energy, engineering, information science, sustainability

Oil and gas extraction in places like Texas’ Permian Basin leads to several waste products, including significant amounts of wastewater and flares firing into the sky. Texas Engineer Vaibhav Bahadur is researching how those byproducts, which are harmful to the environment, could be repurposed to serve as key elements in the creation of “green” hydrogen.

Bahadur, an associate professor in the Walker Department of Mechanical Engineering, recently published a new paper in the journal Desalination about a new way to potentially produce green hydrogen. It involves using the energy wasted via gas flaring to power reverse osmosis, a common, low-energy technique used for municipal water treatment. Hydrogen production requires pristine water, and this process satisfies that need by removing salts and other elements from the equation.

Learn more about green hydrogen in the Q&A with Bahadur below, as well as his research, next steps and its broader implications.

Page 4 of 26212345678Last