Toggle light / dark theme

Strain engineering enhances spin readout in quantum technologies, study shows

Quantum defects are tiny imperfections in solid crystal lattices that can trap individual electrons and their “spin” (i.e., the internal angular momentum of particles). These defects are central to the functioning of various quantum technologies, including quantum sensors, computers and communication systems.

Reliably predicting and controlling the behavior of quantum defects is thus very important, as it could pave the way for the development of better performing quantum systems tailored for specific applications. A property closely linked to the dependability of quantum technologies is the so-called spin readout contrast, which essentially determines how clear it is to distinguish between two different spin states in a system.

Researchers at the Harbin Institute of Technology (Shenzhen), the HUN-REN Wigner Research Center for Physics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences and other institutes recently showed that strain engineering (i.e., stretching or compressing materials) could be used to control how quantum defects behave and enhance spin readout contrast in quantum systems.

Nanoparticle vaccine prevents multiple cancers and stops metastasis in mice

A study led by University of Massachusetts Amherst researchers demonstrates that their nanoparticle-based vaccine can effectively prevent melanoma, pancreatic and triple-negative breast cancer in mice. Not only did up to 88% of the vaccinated mice remain tumor-free (depending on the cancer), but the vaccine reduced—and in some cases completely prevented—the cancer’s spread.

The study is published in Cell Reports Medicine.

“By engineering these nanoparticles to activate the immune system via multi-pathway activation that combines with cancer-specific antigens, we can prevent with remarkable survival rates,” says Prabhani Atukorale, assistant professor of biomedical engineering in the Riccio College of Engineering at UMass Amherst and corresponding author on the paper.

MIT and Harvard Build “Invisible” Immune Cells That Obliterate Cancer

MIT and Harvard scientists have created engineered CAR-NK cells that can hide from the immune system and more effectively destroy cancer.

The cells are designed to suppress immune-rejection signals and enhance tumor-killing power. Tested in humanized mice, they wiped out cancer while avoiding dangerous immune reactions.

A major breakthrough in immune engineering.

Engineered CAR-NK cells could evade immune rejection and target cancer more effectively

One of the newest weapons that scientists have developed against cancer is a type of engineered immune cell known as CAR-NK (natural killer) cells. Similar to CAR-T cells, these cells can be programmed to attack cancer cells.

MIT and Harvard Medical School researchers have now come up with a new way to engineer CAR-NK cells that makes them much less likely to be rejected by the patient’s , which is a common drawback of this type of treatment.

The new advance may also make it easier to develop “off-the-shelf” CAR-NK cells that could be given to patients as soon as they are diagnosed. Traditional approaches to engineering CAR-NK or CAR-T cells usually take several weeks.

Flash Joule heating lights up lithium extraction from ores

A new one‑step, water‑, acid‑, and alkali‑free method for extracting high‑purity lithium from spodumene ore has the potential to transform critical metal processing and enhance renewable energy supply chains. The study is published in Science Advances.

As the demand for lithium continues to rise, particularly for use in , smartphones and power storage, current extraction methods are struggling to keep pace. Extracting lithium from is a lengthy process, and traditional methods that use heat and chemicals to extract lithium from rock produce significant amounts of harmful waste.

Researchers led by James Tour, the T.T. and W.F. Chao Professor of Chemistry and professor of materials science and nanoengineering at Rice University, have developed a faster and cleaner method using flash Joule heating (FJH). This technique rapidly heats materials to thousands of degrees within milliseconds and works in conjunction with chlorine gas, exposing the rock to intense heat and chlorine gas, they can quickly convert spodumene ore into usable lithium.

Cryo-imaging gives deeper view of thick biological materials

Electron microscopy is an exceptional tool for peering deep into the structure of isolated molecules. But when it comes to imaging thicker biological samples to understand how those molecules function in their cellular environments, the technology gets a little murky.

Cornell researchers devised a new method, called tilt-corrected bright-field scanning transmission electron microscopy (tcBF-STEM), to image thick samples with higher contrast and a fivefold increase in efficiency.

The Sept. 23 publication of the findings, in Nature Methods, arrives two years after the death of co-author Lena Kourkoutis, M.S. ‘06, Ph.D. ‘09, associate professor in applied and in Cornell Engineering, whose work in cryo-electron microscopy drove much of the nearly 10-year effort.

Designing random nanofiber networks, optimized for strength and toughness

In nature, random fiber networks such as some of the tissues in the human body, are strong and tough with the ability to hold together but also stretch a lot before they fail. Studying this structural randomness—that nature seems to replicate so effortlessly—is extremely difficult in the lab and is even more difficult to accurately reproduce in engineering applications.

Recently, researchers at The Grainger College of Engineering, University of Illinois Urbana-Champaign and the Rensselaer Polytechnic Institute devised a method to repeatedly print random polymer nanofiber networks with desired characteristics and use to tune the random network characteristics for improved strength and toughness.

“This is a big leap in understanding how nanofiber networks behave,” said Ioannis Chasiotis, a professor in the Department of Aerospace Engineering. “Now, for the first time, we can reproduce randomness with desirable underlying structural parameters in the lab, and with the companion computer model, we can optimize the to find the network parameters, such as nanofiber density, that produce simultaneously higher network strength, stiffness and toughness.”

Supercritical fluids once thought uniform found to contain liquid clusters

A supercritical fluid refers to a state in which the temperature and pressure of a substance exceed its critical point, where no distinction exists between liquid and gas phases. Traditionally, it has been regarded as a single, uniform phase. However, a research team at POSTECH (Pohang University of Science and Technology) experimentally demonstrated nonequilibrium phase separation within supercritical fluids by observing nanometer-sized “liquid clusters” that persist for up to one hour.

The research team led by Professor Gunsu Yun from the Division of Advanced Nuclear Engineering and the Department of Physics at POSTECH, in collaboration with Dr. Jong Dae Jang’s group at the Korea Atomic Energy Research Institute (KAERI), Professor Min Young Ha at Kyung Hee University, and Dr. Changwoo Do’s team at Oak Ridge National Laboratory (ORNL) in the U.S., experimentally verified the existence of nano-clusters that exist separately in a liquid-like state within previously considered a uniform phases.

The experiment utilized the Small-Angle Neutron Scattering (SANS) instrument at Korea’s neutron research facility, HANARO.

Battery made from natural materials could replace conventional lithium-ion batteries

What if the next battery you buy was made from the same kinds of ingredients found in your body? That’s the idea behind a breakthrough battery material made from natural, biodegradable components. It’s so natural, it could even be consumed as food.

A team of researchers at Texas A&M University, including Distinguished Professor of Chemistry Dr. Karen Wooley and Professor of Chemical Engineering Dr. Jodie Lutkenhaus, has developed a biodegradable battery using natural polymers. The findings are published in the Proceedings of the National Academy of Sciences.

Wooley’s research group in the College of Arts and Sciences has spent the past 15 years shifting toward natural products for the construction of sustainable and degradable plastics materials. Lutkenhaus, associate dean for research in the College of Engineering, has been using organic materials to design a better battery. She suggested collaboration to combine Wooley’s naturally sourced polymers with her battery expertise.

Lightning strikes 12 times per minute on fusion engineering test platform

Zap Energy has advanced its Century fusion engineering test platform to operate for more than one hundred plasma shots at 0.2 Hz, or one shot every five seconds, with the resulting heat captured by surfaces coated with circulating liquid metal.

Concentrated inside a about the size of a hot water heater, each plasma carried up to 500 kA of current—about 20 times stronger than a bolt of lightning—discharged into a vessel lined with flowing liquid bismuth. During the record run, Century’s total input power was 57 kilowatts, with 39 kilowatts delivered directly to the cables leading to the .

Compared with Century’s commissioning milestone in 2024, this achievement represents an increase of 20 times in sustained average power and is a major step toward developing commercial power plants using repetitive pulsed power and .

/* */