Blog

Archive for the ‘engineering’ category: Page 3

Dec 6, 2024

Silver nanoparticles trapped within a polymer matrix allow for precise color control in anti-counterfeiting technology

Posted by in categories: chemistry, engineering, nanotechnology, particle physics

In a significant advancement in the field of anti-counterfeiting technology, Professor Jiseok Lee and his research team in the School of Energy and Chemical Engineering at UNIST have developed a new hidden anti-counterfeiting technology, harnessing the unique properties of silver nanoparticles (AgNPs). The results are published in Advanced Materials.

“The technology we have developed holds significant promise in preventing the counterfeiting of valuable artworks and defense materials, particularly in scenarios where authenticity must be verified against potential piracy,” Professor Lee explained.

The team leveraged the inherent disadvantage of AgNPs, which tend to discolor upon exposure to UV light, to create a controlled color development process. By trapping silver nanoparticles within a , researchers can manipulate and, consequently, the color emitted under UV light. Larger polymer nets yield silver nanoparticles that appear yellow, while smaller nets produce a red hue, allowing for precise control of the resultant colors based on ingredient combinations.

Dec 3, 2024

Study provides experimental evidence of high harmonic generation producing quantum light

Posted by in categories: engineering, particle physics, quantum physics

High harmonic generation (HHG) is a highly non-linear phenomenon where a system (for example, an atom) absorbs many photons of a laser and emits photons of much higher energy, whose frequency is a harmonic (that is, a multiple) of the incoming laser’s frequency. Historically, the theoretical description of this process was addressed from a semi-classical perspective, which treated matter (the electrons of the atoms) quantum-mechanically, but the incoming light classically. According to this approach, the emitted photons should also behave classically.

Despite this evident theoretical mismatch, the description was sufficient to carry out most of the experiments, and there was no apparent need to change the framework. Only in the last few years has the scientific community begun to explore whether the emitted light could actually exhibit a quantum behavior, which the semi-classical theory might have overlooked. Several theoretical groups, including the Quantum Optics Theory group at ICFO, have already shown that, under a full quantum description, the HHG process emits light with quantum features.

However, experimental validation of such predictions remained elusive until, recently, a team led by the Laboratoire d’Optique Appliquée (CNRS), in collaboration with ICREA Professor at ICFO Jens Biegert and other multiple institutions (Institut für Quantenoptik—Leibniz Universität Hannover, Fraunhofer Institute for Applied Optics and Precision Engineering IOF, Friedrich-Schiller-University Jena), demonstrated the quantum optical properties of high-harmonic generation in semiconductors. The results, appearing in PRX Quantum, align with the previous theoretical predictions about HHG.

Dec 2, 2024

Artificial photosynthesis learned from nature: New solar hydrogen production technology developed

Posted by in categories: engineering, nanotechnology, solar power, sustainability

Researchers have successfully developed a supramolecular fluorophore nanocomposite fabrication technology using nanomaterials and constructed a sustainable solar organic biohydrogen production system.

The research team used the good nanosurface adsorption properties of tannic acid-based metal-polyphenol polymers to control the and optical properties of fluorescent dyes while also identifying the photoexcitation and electron transfer mechanisms. Based on these findings, he implemented a solar-based biohydrogen production system using bacteria with hydrogenase enzymes.

The findings are published in the journal Angewandte Chemie International Edition. The joint research was led by Professor Hyojung Cha at the Department of Hydrogen and Renewable Energy, Kyungpook National University and Professor Chiyoung Park at the Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science & Technology.

Dec 2, 2024

Higher Order Van Hove Singularities and Precision Engineering Propel Quantum Technology Forward

Posted by in categories: engineering, quantum physics

A recent study identifies higher-order Van Hove singularities as features that amplify electron interactions, relevant for quantum devices.

Dec 1, 2024

Strain engineering approach enhances performance of 2D semiconductor-based transistors

Posted by in categories: computing, engineering

The manipulation of mechanical strain in materials, also known as strain engineering, has allowed engineers to advance electronics over the past decades, for instance enhancing the mobility of charge carriers in devices. Over the past few years, some studies have tried to devise effective strategies to manipulate strain in two-dimensional (2D) semiconductors that are compatible with existing industrial processes.

Researchers at Stanford University recently introduced a CMOS-compatible approach to engineer the (i.e., stretchiness) in monolayer semiconductor transistors.

This approach, outlined in a paper published in Nature Electronics, relies on the use of silicon nitride capping layers that can impart strain on monolayer molybdenum disulfide (MoS2) transistors integrated on silicon substrates.

Nov 29, 2024

Tiny rotating particles create vorticity in viscous fluids, yielding fascinating new behaviors

Posted by in categories: engineering, information science, mathematics, particle physics

Vorticity, a measure of the local rotation or swirling motion in a fluid, has long been studied by physicists and mathematicians. The dynamics of vorticity is governed by the famed Navier-Stokes equations, which tell us that vorticity is produced by the passage of fluid past walls. Moreover, due to their internal resistance to being sheared, viscous fluids will diffuse the vorticity within them and so any persistent swirling motions will require a constant resupply of vorticity.

Physicists at the University of Chicago and applied mathematicians at the Flatiron Institute recently carried out a study exploring the behavior of viscous fluids in which tiny rotating particles were suspended, acting as local, mobile sources of vorticity. Their paper, published in Nature Physics, outlines fluid behaviors that were never observed before, characterized by self-propulsion, flocking and the emergence of chiral active phases.

“This experiment was a confluence of three curiosities,” William T.M. Irvine, a corresponding author of the paper, told Phys.org. “We had been studying and engineering parity-breaking meta-fluids with fundamentally new properties in 2D and were interested to see how a three-dimensional analog would behave.

Nov 28, 2024

Smart Materials and Nanotechnology Engineering conf. kicks off

Posted by in categories: engineering, nanotechnology

Dr Mehdi Ghommem said that the AUS was happy to host and organise the eighth edition of the International Conference on Smart Materials and Nanotechnology, and to host more than 100 participants from 15 different countries.

Ghommem added that the social programme of the conference included plenary lectures, keynote lectures, parallel technical sessions with more than 70 presentations.

Continue reading “Smart Materials and Nanotechnology Engineering conf. kicks off” »

Nov 28, 2024

Strange Engineering Hiding in Plain Sight

Posted by in categories: biotech/medical, cyborgs, engineering, evolution

▶️ Visit https://brilliant.org/NewMind to get a 30-day free trial + 20% off your annual subscription.

This video explores fascinating engineering solutions hiding in plain sight — ingenious designs that solve complex problems through elegant simplicity. From shoes that expand when stretched to windshields with hidden patterns, discover how everyday objects incorporate remarkable engineering innovations.

Continue reading “Strange Engineering Hiding in Plain Sight” »

Nov 28, 2024

Nanopesticide delivery system made with neem seed extract improves pesticide effectiveness

Posted by in categories: chemistry, engineering, food, sustainability

Pesticides can be made more effective and environmentally friendly by improving how they stick to plant surfaces, thanks to new research led by Dr. Mustafa Akbulut, professor of chemical engineering at Texas A&M University.

Akbulut and his research group have developed an innovative pesticide delivery system called nanopesticides. These tiny technologies, developed through a collaboration between Texas A&M University’s engineering and agricultural colleges, Dr. Luis Cisneros-Zevallo, professor of Horticultural Science and Dr. Younjin Min, professor of Chemical Environ Engineering at University of California, Riverside, could change how we use pesticides.

“The U.S. is a world leader in , feeding not just our nation but much of the world. Yet we are using pesticides in a way that is simply not sustainable—with a substantial fraction not reaching its intended target,” said Akbulut. “Our research shows that by optimizing the surface chemistry of pesticide carriers, we can make these essential crop protection tools more efficient.”

Nov 27, 2024

Q&A — Information, Evolution, and intelligent Design — With Daniel Dennett

Posted by in categories: engineering, evolution, internet

How long until humans are made redundant by the evolution of technology? Is there an inherent difference between men and women’s intelligence? Daniel Dennett answers questions from the audience following his talk. Watch the main event here: • Information, Evolution, and intellige…
Subscribe for regular science videos: http://bit.ly/RiSubscRibe.

The concept of information is fundamental to all areas of science, and ubiquitous in daily life in the Internet Age. However, it is still not well understood despite being recognised for more than 40 years. In this talk, Daniel Dennett explored steps towards a unified theory of information, through common threads in evolution, learning, and engineering.

Continue reading “Q&A — Information, Evolution, and intelligent Design — With Daniel Dennett” »

Page 3 of 26212345678Last