Toggle light / dark theme

Team discovers electrochemical method for highly selective single-carbon insertion in aromatic rings

A research team has discovered an electrochemical method that allows highly selective para-position single-carbon insertion into polysubstituted pyrroles. Their approach has important applications in synthetic organic chemistry, especially in the field of pharmaceuticals.

Their work is published in the Journal of the American Chemical Society on July 14.

“We set out to address the longstanding challenge of achieving single-carbon insertion into aromatic rings with precise positional control,” said Mahito Atobe, Professor, Faculty of Engineering, YOKOHAMA National University. Transformations that modify aromatic rings are central to pharmaceutical and materials synthesis. However, inserting a single carbon atom into a specific position—especially the para-position—has remained extremely rare. Para position describes the location of substituents, those atoms that replace a hydrogen atom on a molecule. In the single carbon insertion approach, researchers add a single carbon atom into a molecule’s carbon framework. This lengthens a carbon chain or expands a ring by one carbon unit.


Method has organic chemistry applications, especially in pharmaceuticals.

Development of revolutionizing photo-induced microscopy and its use around the globe celebrated in new publication

Photo-induced force microscopy began as a concept in the mind of Kumar Wickramasinghe when he was employed by IBM in the early years of the new millennium. After he came to the University of California, Irvine in 2006, the concept evolved into an invention that would revolutionize research by enabling scientists to study the fundamental characteristics of matter at nanoscale resolution.

Since the earliest experimental uses of PiFM around 2010, the device, which reveals the chemical composition and spatial organization of materials at the , has become a tool of choice for researchers in fields as diverse as biology, geology, materials science and even advanced electronics manufacturing.

“This is the story of a technology that was inspired by work at IBM, was invented and developed at UC Irvine, then got spun off, and now we have instruments on all continents across the world except for Antarctica,” says Wickramasinghe, Henry Samueli Endowed Chair and Distinguished Professor emeritus of electrical engineering and computer science who now holds the title of UC Irvine Distinguished Research Professor. “Almost anywhere serious research is happening, there are people out there who are using PiFM to discover new things.”

Tapping into the million-year energy source below our feet

There’s an abandoned coal power plant in upstate New York that most people regard as a useless relic. But MIT’s Paul Woskov sees things differently.

Woskov, a research engineer in MIT’s Plasma Science and Fusion Center, notes the plant’s power turbine is still intact and the transmission lines still run to the grid. Using an approach he’s been working on for the last 14 years, he’s hoping it will be back online, completely carbon-free, within the decade.

In fact, Quaise Energy, the company commercializing Woskov’s work, believes if it can retrofit one power plant, the same process will work on virtually every coal and gas power plant in the world.

Quaise is hoping to accomplish those lofty goals by tapping into the energy source below our feet. The company plans to vaporize enough rock to create the world’s deepest holes and harvest geothermal energy at a scale that could satisfy human energy consumption for millions of years. They haven’t yet solved all the related engineering challenges, but Quaise’s founders have set an ambitious timeline to begin harvesting energy from a pilot well by 2026. (Circa June 28 2022/Posted first in Lifeboat jn, 2022 by Gemechu Taye & Genevieve Klein)


MIT spinout Quaise Energy is working to create geothermal wells made from the world’s deepest holes in order to repurpose coal and gas plants.

A mathematical ‘Rosetta Stone’ translates and predicts the larger effects of molecular systems

Penn Engineers have developed a mathematical “Rosetta Stone” that translates atomic and molecular movements into predictions of larger-scale effects, like proteins unfolding, crystals forming and ice melting, without the need for costly, time-consuming simulations or experiments. That could make it easier to design smarter medicines, semiconductors and more.

In a recent paper in Journal of the Mechanics and Physics of Solids, the Penn researchers used their framework, stochastic thermodynamics with internal variables (STIV), to solve a 40-year problem in phase-field modeling, a widely used tool for studying the shifting frontier between two states of matter, like the boundary between water and ice or where the folded and unfolded parts of a protein join.

“Phase-field modeling is about predicting what happens at the thin frontier between phases of matter, whether it’s proteins folding, crystals forming or ice melting,” says Prashant Purohit, Professor in Mechanical Engineering and Applied Mechanics (MEAM) and one of the paper’s co-authors. “STIV gives us the mathematical machinery to describe how that frontier evolves directly from first principles, without needing to fit data from experiments.”

Fano interference of photon pairs from a metasurface

Two-photon interference, a quantum phenomenon arising from the principle of indistinguishability, is a powerful tool for quantum state engineering and plays a fundamental role in various quantum technologies. These technologies demand robust and efficient sources of quantum light, as well as scalable, integrable, and multifunctional platforms. In this regard, quantum optical metasurfaces (QOMs) are emerging as promising platforms for the generation and engineering of quantum light, in particular pairs of entangled photons (biphotons) via spontaneous parametric down-conversion (SPDC). Due to the relaxation of the phase-matching condition, SPDC in QOMs allows different channels of biphoton generation, such as those supported by overlapping resonances, to occur simultaneously. In previously reported QOMs, however, SPDC was too weak to observe such effects.

Taking the shock out of predicting shock wave behavior with precise computational modeling

Shock waves should not be shocking—engineers across scientific fields need to be able to precisely predict how the instant and strong pressure changes initiate and dissipate to prevent damage. Now, thanks to a team from Yokohama National University, those predictions are even better understood.

In work published on Aug. 19 in the Physics of Fluids, the researchers detailed how computational models used to simulate wave behavior represent the very weak in a way that is distinctly different from both theoretical predictions and physical measurements.

Shock waves comprise the pressure that pushes out from an explosion or from an object moving faster than sound, like a supersonic jet. Weak shockwaves refer to the same changes in pressure, density and velocity, but they are much smaller than the larger waves and move closer to the speed of sound. However, current computational modeling approaches have difficulty accurately representing these very weak shock waves, according to co-author Keiichi Kitamura, professor, Faculty of Engineering, Yokohama National University.

Curved nanosheets in anode help prevent battery capacity loss during fast charging

As electric vehicles (EVs) and smartphones increasingly demand rapid charging, concerns over shortened battery lifespan have grown. Addressing this challenge, a team of Korean researchers has developed a novel anode material that maintains high performance even with frequent fast charging.

A collaborative effort by Professor Seok Ju Kang in the School of Energy and Chemical Engineering at UNIST, Professor Sang Kyu Kwak of Korea University, and Dr. Seokhoon Ahn of the Korea Institute of Science and Technology (KIST) has resulted in a hybrid anode composed of graphite and organic nanomaterials. This innovative material effectively prevents capacity loss during repeated fast-charging cycles, promising longer-lasting batteries for various applications. The findings are published in Advanced Functional Materials.

During battery charging, lithium ions (Li-ions) move into the , storing energy as Li atoms. Under rapid charging conditions, excess Li can form so-called “dead lithium” deposits on the surface, which cannot be reused. This buildup reduces capacity and accelerates battery degradation.

Researchers pioneer fluid-based laser scanning for brain imaging

When Darwin Quiroz first started working with optics as an undergraduate, he was developing atomic magnetometers. That experience sparked a growing curiosity about how light interacts with matter, an interest that has now led him to a new technique in optical imaging.

Quiroz, a Ph.D. student in the Department of Electrical, Computer and Energy Engineering at the University of Colorado Boulder, is co-first author of a new study that demonstrates how a fluid-based known as an electrowetting prism can be used to steer lasers at high speeds for advanced imaging applications.

The work, published in Optics Express, conducted along with mechanical engineering Ph.D. graduate Eduardo Miscles and Mo Zohrabi, senior research associate, opens the door to new technologies in microscopy, LiDAR, optical communications and even brain imaging.

3D-printed metamaterials harness complex geometry to dampen mechanical vibrations

In science and engineering, it’s unusual for innovation to come in one fell swoop. It’s more often a painstaking plod through which the extraordinary gradually becomes ordinary.

But we may be at an inflection point along that path when it comes to engineered structures whose are unlike anything seen before in nature, also known as mechanical metamaterials. A team led by researchers at the University of Michigan and the Air Force Research Laboratory (AFRL) has shown how to 3D print intricate tubes that can use their to stymie vibrations.

Such structures could be useful in a variety of applications where people want to dampen vibrations, including transportation, civil engineering and more. The team’s new study, published in the journal Physical Review Applied, builds on decades of theoretical and computational research to create structures that passively impede vibrations trying to move from one end to the other.

/* */