Toggle light / dark theme

Hydrogen is a promising form of carbon-free energy, but moving and storing the superlight element is costly and energy-intensive. So a California startup cofounded in 2022 by two leading chemists, including a Nobel laureate, is designing a new type of tank made with nanomaterials that aims to be cheaper and safer than any currently in use — and hold more hydrogen, too.

Irvine, California-based H2MOF hopes to sell its next-generation hydrogen tanks sometime after 2024 to heavy-duty vehicle makers with plans to offer zero-emission fuel cell vehicles. It argues that in addition to holding fuel inside the vehicles, these tanks will also provide a better way to ship the fuel by truck or train as… More.


H2MOF thinks nanomaterials designed to hold hydrogen at low pressure like a sponge absorbing water are a cheaper, more efficient way to store the elemental fuel.

A newly identified process could explain a variety of natural phenomena and enable new approaches to desalination.

Evaporation is happening all around us all the time, from the sweat cooling our bodies to the dew burning off in the morning sun. But science’s understanding of this ubiquitous process may have been missing a piece all this time.

In recent years, some researchers have been puzzled upon finding that water in their experiments, which was held in a sponge-like material known as a hydrogel, was evaporating at a higher rate than could be explained by the amount of heat, or thermal energy, that the water was receiving. And the excess has been significant — a doubling, or even a tripling or more, of the theoretical maximum rate.

Samsung, the South Korean tech giant, has recently made a groundbreaking announcement in the field of battery technology. The company claims to have developed an all solid-state battery that could revolutionize the way we power our devices. This breakthrough could potentially lead to longer-lasting batteries with faster charging times, addressing one of the biggest pain points for consumers.

Solid-state batteries are a next-generation energy storage technology that replaces the liquid electrolyte found in traditional lithium-ion batteries with a solid material. This innovation offers several advantages, including increased energy density, improved safety, and enhanced lifespan. Samsung’s new solid-state battery reportedly boasts an energy density of up to 900 watt-hours per liter, which is nearly double the capacity of current lithium-ion batteries.

The fact that nanoparticle and polymer hybrid materials can often combine the advantages of each has been demonstrated in several fields. Embedding PNCs into polymer is an effective strategy to enhance the PNCs stability and polymer can endow the PNCs with other positive effects based on different structure and functional groups.

The uniform distribution of PNCs in is critical to the properties of the nanocomposites and the aggregation of PNCs induced by high surface energy has a severe influence on the performance of related applications. As such, the loading fraction is limited owing to the phase separation between PNCs and polymer.

Chemical interaction between PNCs and polymer is necessary to suppress the phase separation. Meanwhile, most of the fabrication methods of PNCs/polymer nanocomposites are spin coating, swelling-shrinking and electrospinning based on the in-situ synthesis of PNCs in polymer matrix and physical mixing, but extremely few works can achieve the fabrication of PNCs/ nanocomposites by bulk polymerization.

Contrary to what we all learned in elementary school science class, it turns out that heat may not be necessary to make water evaporate. Scientists at MIT have made the surprising discovery that light alone can evaporate water, and is even more efficient at it than heat. The finding could improve our understanding of natural phenomena or boost desalination systems.

Evaporation occurs when water molecules near the surface of the liquid absorb enough energy to escape into the air above as a gas – water vapor. Generally, heat is the energy source, and in the case of Earth’s water cycle, that heat comes primarily from sunlight.

But in the last few years, different teams of scientists have noticed discrepancies in their experiments concerning water held in hydrogels. Water appeared to be evaporating at much higher rates than should be possible based on the amount of heat it was exposed to, sometimes tripling the theoretical maximum rate.

The engine combines the right blend of power, performance, technology and efficiency.

A renowned automaker, typically known to introduce high-revving models that often found its competition in offerings from rival brands with double the cylinders, has now taken a bold step by unveiling a single-cylinder engine.

With a rich heritage dating back to 1926 when the company was founded in Bologna, Italy, Ducati has consistently… More.


Ducati.

Link :- https://eng.unimelb.edu.au/ingenium/wearable-device-makes-me…f-a-finger


Researchers from the University of Melbourne and RMIT University have invented an experimental wearable device that generates power from a user’s bending finger and can create and store memories, in a promising step towards health monitoring and other technologies.

Multifunctional devices normally require several materials in layers, which involves the time-consuming challenge of stacking nanomaterials with high precision. This innovation features a single nanomaterial incorporated into a stretchable casing fitted to a person’s finger. The nanomaterial enables the device to produce power simply through the user bending their finger. The super-thin material also allows the device to perform memory tasks.

The team, led by RMIT University and the University of Melbourne, in collaboration with other Australian and international institutions, made the proof-of-concept device with the rust of a low-temperature liquid metal called bismuth, which is safe and well suited for wearable applications.

“There is this kind of power the images have. It really isn’t from us. We’re creating the context in which you can appreciate them, but we’re not forcing it,” Kahn said.

In the background, award-winning actress Michelle Williams narrates what we see, which, Kahn admits, was a bit of a deviation from his usual filmmaking blueprint.

“Many of my films are done just through putting together interviews with people or encounters with people,” he said. Or in other words, there is no doctored narrative.

A new “structure reduces the amount of materials necessary – bringing down the weight, volume, and, crucially, the cost of manufacturing.”

In what can provide a major boost to renewable energy generation initiatives, a cutting-edge tidal turbine blade has been indigenously developed in Scotland at a more affordable price.

The turbine was manufactured by a team of design engineers from the University of Edinburgh and is slated to help reduce the levelized cost of tidal energy. The new “structure reduces the amount of materials necessary – bringing down the weight, volume and, crucially, the cost of manufacturing the blade,” said the team in a statement.