Looking forward to a future where laser beams replace power lines, DAPRA’s Persistent Optical Wireless Energy Relay (POWER) program has set new records for transmitting more power wirelessly over longer distances.

Researchers at the University of Adelaide have developed a new dry electrode for aqueous batteries which delivers cathodes with more than double the performance of iodine and lithium-ion batteries.
“We have developed a new electrode technique for zinc –iodine batteries that avoids traditional wet mixing of iodine,” said the University of Adelaide’s Professor Shizhang Qiao, Chair of Nanotechnology, and Director, Center for Materials in Energy and Catalysis, at the School of Chemical Engineering, who led the team.
We mixed active materials as dry powders and rolled them into thick, self-supporting electrodes. At the same time, we added a small amount of a simple chemical, called 1,3,5-trioxane, to the electrolyte, which turns into a flexible protective film on the zinc surface during charging.
Scientists from the Natural History Museum have unraveled the geological mysteries behind jadarite, a rare lithium-bearing mineral with the potential to power Europe’s green energy transition which, so far, has only been found in one place on Earth, Serbia’s Jadar Basin.
Discovered in 2004 and described by museum scientists Chris Stanley and Mike Rumsey, jadarite made headlines for its uncanny resemblance to the chemical formula of Kryptonite, the fictional alien mineral which depletes Superman’s powers. However, today its value is more economic and environmental, offering a high lithium content and lower-energy route to extraction compared to traditional sources like spodumene.
A team of researchers at the museum have uncovered why this white, nodular mineral is so rare. Their findings show that to form, jadarite must follow an exact set of geological steps in highly specific conditions. This involves a strict interplay between alkaline-rich terminal lakes, lithium-rich volcanic glass and the transformation of clay minerals into crystalline structures which are exceptionally rare.
Once only a part of science fiction, lasers are now everyday objects used in research, health care and even just for fun. Previously available only in low-energy light, lasers are now available in wavelengths from microwaves through X-rays, opening a range of different downstream applications.
In a study published in Nature, an international collaboration led by scientists at the University of Wisconsin–Madison has generated the shortest hard X-ray pulses to date through the first demonstration of strong lasing phenomena.
The resulting pulses can lead to several potential applications, from quantum X-ray optics to visualizing electron motion inside molecules.
The bottom line is that no matter what the zero-point energy is, it’s the background of the universe on top of which all of physics takes place. Just as you can’t go lower than the ground floor of a building with no basement, you can’t get lower than the ground state of the universe — so there’s nothing for you to extract, and there’s no way to leverage that into useful applications of energy.
So, unfortunately, any work you do in the universe will have to be done the old-fashioned way.
The harsh interstellar environment ought to destroy these carbon-rich molecules; experiments reveal their secret weapon.
Organic molecules called polycyclic aromatic hydrocarbons (PAHs) populate interstellar space and represent a major reservoir of carbon, an essential element for life. The smallest of these molecules mysteriously survive the harsh environment of space, and a research team has now explained how they do it [1]. In experiments in space-like conditions, the team showed that the molecules can use a process called recurrent fluorescence to shed some of the potentially destructive vibrational energy they receive from ultraviolet photons and molecular collisions. The results will help theorists model the dissemination of the building blocks of life throughout the cosmos.
PAHs form in dying stars and get ejected via supernovae into the interstellar medium. In 2021 they were detected in cold interstellar clouds (molecular clouds), and the JWST observatory has since confirmed widespread evidence for small PAHs at higher abundance than models predict. Small PAHs somehow survive ultraviolet radiation, molecular collisions, and other processes that trigger internal vibrations that can tear them apart.
Scientists have been analyzing certain animals living within the CEZ for years, including bacteria, rodents, and even birds. One study back in 2016 found that Eastern tree frogs (Hyla orientalis), which are usually a green color, were more commonly black within the CEZ. The biologists theorize that the frogs experienced a beneficial mutation in melanin—pigments responsible for skin color—that helped dissipate and neutralize some of the surrounding radiation.
This made scientists ponder: could something similar be happening to Chernobyl’s wild dogs?
The study uncovered that the feral dogs living near the Chernobyl Power Plant showed distinct genetic differences from dogs living only some 10 miles away in nearby Chernobyl City. While this may seem to heavily imply that these dogs have undergone some type of rapid mutation or evolution due to radiation exposure, this study is only a first step in proving that hypothesis.