Toggle light / dark theme

A new technology can extract lithium from brines at an estimated cost of under 40% that of today’s dominant extraction method, and at just a fourth of lithium’s current market price. The new technology would also be much more reliable and sustainable in its use of water, chemicals, and land than today’s technology, according to a study published in Matter by Stanford University researchers.

Global demand for lithium has surged in recent years, driven by the rise of electric vehicles and renewable energy storage. The dominant source of lithium extraction today relies on evaporating brines in huge ponds under the sun for a year or more, leaving behind a lithium-rich solution, after which heavy use of potentially toxic chemicals finishes the job. Water with a high concentration of salts, including lithium, occurs naturally in some lakes, hot springs, and aquifers, and as a byproduct of oil and natural gas operations and of .

Many scientists are searching for less expensive and more efficient, reliable, and environmentally friendly lithium extraction methods. These are generally direct lithium extraction that bypasses big evaporation ponds. The new study reports on the results of a new method using an approach known as “redox-couple electrodialysis,” or RCE, along with cost estimates.

Jupiter Power, an Austin-based energy developer, owns and operates the project at Hiram Clarke Road and U.S. 90 at the site of the former H.O. Clarke gas-fired power plant. It’s a 200-megawatt facility, enough to power 50,000 Texas homes during the hottest summer days, with the ability to discharge power at maximum capacity for two hours.

On any given day, the Houston area must import about 60% of its needed electricity from other parts of the state where power plants are more plentiful. This often results in a phenomenon known as congestion: Low-cost electrons are clogged on power lines into Houston much like commuters on the highway during rush hour, which raises the wholesale cost of electricity in the region. These wholesale price spikes are initially paid by retail electric providers and can eventually be passed onto consumers.

Every clear night for the last three weeks, Bob Stephens has pointed his home telescope at the same two stars in hopes of witnessing one of the most violent events in the universe—a nova explosion a hundred thousand times brighter than the sun.

The eruption, which scientists say could happen any day now, has excited the interest of major observatories worldwide, and it promises to advance our understanding of turbulent binary star systems.

Yet for all the high-tech observational power that NASA and other scientific institutions can muster, astrophysicists are relying on countless amateur astronomers like Stephens to spot the explosion first.

Whenever and wherever stars are born, which occurs whenever clouds of gas sufficiently collapse under their own gravity, they come in a wide variety of sizes, colors, temperatures, and masses. The largest, bluest, most massive stars contain the greatest amounts of nuclear fuel, but perhaps paradoxically, those stars are actually the shortest lived. The reason is straightforward: in any star’s core, where nuclear fusion occurs, it only occurs wherever temperatures exceed 4 million K, and the higher the temperature, the greater the rate of fusion.

So the most massive stars might have the most fuel available at the start, but that means they shine brightly as they burn through their fuel quickly. In particular, the hottest regions in the core will exhaust their fuel the fastest, leading the most massive stars to die the most quickly. The best method we have for measuring “How old is a collection of stars?” is to examine globular clusters, which form stars in isolation, often all at once, and then never again. By looking at the cooler, fainter stars that remain (and the lack of hotter, bluer, brighter, more massive stars), we can state with confidence that the Universe must be at least ~12.5–13.0 billion years old.

The widespread adoption of electric vehicles greatly relies on the development of robust and fast-charging battery technologies that can support their continuous operation for long periods of time. One proposed energy storage solution to improve the endurance of electric vehicles entails the use of so-called structural batteries.

Structural batteries are batteries that can serve two purposes, acting both as structural components of vehicles and solutions. Instead of being external components that are added to an electronic or electric device, these batteries are thus directly embedded into the structure.

Researchers at Shanghai University and their collaborators recently devised a promising strategy to fabricate highly performing structural batteries with customizable geometric configurations. Their strategy, outlined in a paper published in Composites Science and Technology, enables the 3D-printing of structural lithium-ion batteries for different geometrical configurations.

Lithium-metal batteries could exhibit significantly higher energy densities than lithium-ion batteries, which are the primary battery technology on the market today. Yet lithium-metal cells also typically have significant limitations, the most notable of which is a short lifespan.

Researchers at University of Science and Technology of China and other institutes recently introduced a new electrolyte design that could be used to develop highly performing lithium-metal pouch cells with longer lifespans. This electrolyte, presented in a paper in Nature Energy, has a unique nanometer-scale solvation structure, with pairs of ions densely packed together into compact ion-pair aggregates (CIPA).

“The primary objectives of our recent work are to markedly accelerate the practical applications of lithium-metal batteries and offer deep mechanistic understandings of this complicated system,” Prof. Shuhong Jiao, co-author of the paper, told Tech Xplore.

Right off the bat, one of the biggest improvements is the weight of the 4,680 shell itself – down to 49g from the 70g weight of a gen 1 cell. Tesla has essentially optimized the shell, making it thinner, and reducing its internal complexity. They do this by welding the tabless electrode to the cell cap.

That weight reduction is significant – at the battery pack level, the Cybertruck has 1,344 cells – which means that it reduces 28.2kg or 62.1lb of the overall pack weight. But rather than leaving that space empty, Tesla has instead filled that weight with more battery material. Calculated, that’s about a 10% increase in overall pack energy density.

The Limiting Factor intends to release another video looking at the energy density of the Cybercell and the detailed specs of the 4,680 cell. We’ll be on the lookout for both of those videos in the coming weeks as they could reveal additional information on Tesla’s 4,680 Gen 2 cells. We’re interested in how the Cybercell shapes up in comparison to the previous 4,680 cells – which were pulled from production after the 4680 Model Y.