Archive for the ‘energy’ category: Page 4

Jan 30, 2024

A method to fabricate long rolls of subnanocomposite dielectric polymers

Posted by in categories: energy, sustainability, transportation

Engineers and material scientists have been trying to develop increasingly advanced devices, to meet the growing needs of the electronics industry. These devices include electrostatic capacitors, devices that can store electrical energy in a dielectric between a pair of electrodes through the accumulation of electric charge on the dielectric surfaces.

These capacitors are crucial components of various technologies, including electric vehicles and photovoltaics (PVs). They are often fabricated using polymers as dielectric materials, synthetic substances made up of large organic molecules with good intrinsic flexibility and insulating properties.

Researchers at Tsinghua University and other institutes in China recently introduced a new strategy to fabricate filled with subnanosheets exhibiting highly advantageous properties. Their proposed method, outlined in a Nature Energy paper, allowed them to fabricate a 100-meter-long roll of a polymer-based subnanocomposite film.

Jan 28, 2024

Your next new Hydrogen fuel cell could be made by GM and Honda

Posted by in categories: energy, transportation

Our plans include a new all-electric product for North America positioned at a price point lower than the upcoming Chevrolet Equinox EV.

GM and Honda start large-scale hydrogen fuel cell production, aiming to overcome challenges and revolutionize green transportation.

Jan 28, 2024

Breaking through the limits of a single fiber laser amplifier: Coherent beam combination

Posted by in category: energy

High-power, high-energy ultrafast fiber lasers are indispensable tools in various fields, from basic and applied science research to industrial processing. However, due to thermal effects, nonlinear effects, there is always a limit to the power/energy expansion of a single fiber laser amplifier.

Coherent beam combination (CBC) technology is an effective strategy to break through the limits of a single fiber laser amplifier and further achieve power/ scaling.

Under the conditions of mutual coherence and stable phase relationship, multiple can be superimposed and mutually interfere with each other. This approach allows for an improvement in average power and pulse energy by a factor almost equal to the total number of combined channels. However, with the increase of beam combining channels, the complexity of CBC systems also increases, bringing negative impacts such as decreased beam combining efficiency, degraded beam quality, and increased operational difficulty to the system.

Jan 27, 2024

What We Still Would Not Know IF IVO Quantized Inertia Drive Works in Orbit

Posted by in categories: energy, quantum physics

The IVO quantum inertia drive is in orbit now and will be turned on within one to ten weeks and then operated for many weeks or months.

The IVO quantum inertia drive is very controversial because it would go against many theories in physics.

Let us assume the 52 millinewton drive using 1 watt of power from a drive that weighs about 200 grams works.

Jan 27, 2024

Gamma Ray Breakthrough: Pulsars Propel Astrophysics Into a New Era

Posted by in categories: energy, physics, space

The U.S. Naval Research Laboratory and the Fermi Large Area Telescope Collaboration have discovered nearly 300 gamma ray pulsars, advancing pulsar research and contributing to gravitational wave studies and navigation applications. The findings also include insights into “spider” pulsars, where a neutron star interacts intensively with its binary companion.

The U.S. Naval Research Laboratory (NRL), in conjunction with the international Fermi Large Area Telescope Collaboration, has announced the discovery of almost 300 gamma ray pulsars. This announcement was made in their Third Catalog of Gamma Ray Pulsars, marking a significant achievement 15 years after the 2008 launch of the Fermi telescope. At the time of Fermi’s launch, there were less than ten known gamma-ray pulsars.

“Work on this important catalog has been going on in our group for years,” said Paul Ray, Ph.D., head of the High Energy Astrophysics and Applications Section at NRL. “Our scientists and postdocs have been able to both discover and analyze the timing behavior and spectra of many of these newfound pulsars as part of our quest to further our understanding of these exotic stars that we are able to use as cosmic clocks.”

Jan 26, 2024

DragonFire laser weapon achieves UK’s first high-power firing

Posted by in categories: energy, military

The DragonFire laser-directed energy weapon (LDEW) system has achieved the UK’s first high-power firing of a laser weapon against aerial targets during a trial at the MOD’s Hebrides Range.

The DragonFire is a line-of-sight weapon and can engage with any visible target, and its range is classified. The system is able to deliver a high-power laser over long ranges and requires precision equivalent to hitting a £1 coin from a kilometer away.

Laser-directed energy weapons are incredibly powerful and can engage targets at lightning-fast speeds. They use a concentrated beam of light to cut through their target, resulting in structural failure or other devastating outcomes if the warhead is targeted.

Jan 26, 2024

Advanced full-color image sensor technology enables simultaneous energy harvesting and imaging

Posted by in categories: energy, nanotechnology

Organic-based optoelectronic technology is increasingly recognized as an energy-efficient solution for low-power indoor electronics and wireless IoT sensors. This is largely due to its superior flexibility and light weight compared to conventional silicon-based devices. Notably, organic photovoltaic cells (OPVs) and organic photodetectors (OPDs) are leading examples in this field.

OPVs have the remarkable ability to absorb energy and generate electricity even under very low light conditions, while OPDs are capable of capturing images. However, despite their potential, the development of these devices has thus far been conducted independently. As a result, they have not yet reached the level of efficiency necessary to be considered practical for next-generation, miniaturized devices.

A Korea Institute of Science and Technology (KIST) research team, led by Dr. Min-Chul Park and Dr. Do Kyung Hwang of the Center for Opto-Electronic Materials and Devices, Prof. Jae Won Shim and Prof. Tae Geun Kim of the School of Electrical Engineering at Korea University, Prof. JaeHong Park of the Department of Chemistry and Nanoscience at Ewha Womans University, have now developed an organic-based optoelectronic device.

Jan 25, 2024

Coal: Don’t Burn It, Compute With It

Posted by in categories: energy, materials

A certain fossil fuel works well as a 2D insulating films that could help launch a new era of semiconductors made with 2D materials.

Jan 25, 2024

A new study makes seawater drinkable and a source of energy

Posted by in categories: energy, sustainability

Research shows 20% boost in seawater desalination efficiency and reducing energy demand – a leap towards eco-friendly water solutions.

Jan 24, 2024

Engineers at UMass Amherst Harvest Abundant Clean Energy from Thin Air, 24/7

Posted by in categories: energy, materials

A team of engineers at the University of Massachusetts Amherst has recently shown that nearly any material can be turned into a device that continuously harvests electricity from humidity in the air.

Researchers describe the “generic Air-gen effect”—nearly any material can be engineered with nanopores to harvest, cost effective, scalable, interruption-free electricity.

Page 4 of 31912345678Last