Toggle light / dark theme

BEIJING, June 9 (Reuters) — BYD announced on Friday a new brand of electric vehicles (EV) ranging from off-road to sports cars as the company looks to meet more diversified consumer demand.

The new brand is called Fang Cheng Bao, which translates from Chinese literally as “Formula” and “Leopard”. The Chinese EV giant is expected to launch the first model this year — an SUV identified for now internally as SF, BYD said in a statement.

BYD, with its Dynasty and Ocean series of pure electric and plug-in hybrid models mostly priced under 300,000 yuan ($42,140.16), has been out selling Volkswagen-branded cars in China since November.

A new airplane seat concept that allows wheelchair users to stay in their own chair throughout a flight was revealed this week by a subsidiary of US airline Delta, a move welcomed as a “huge step” by potential customers.

“Unbelievably excited,” is how power wheelchair user and avid traveler Cory Lee described his reaction after a working prototype of the design was demonstrated by Delta Flight Products (DFP) at the Aircraft Interiors Expo (AIX) in Hamburg, Germany, a symposium spotlighting airplane cabin innovations.

DFP’s concept seamlessly converts to and from a traditional airplane seat. The built-in seat folds up to allow a wheelchair to be docked into place. The seat would be installed into pre-existing aircraft seat track systems, so would not involve any structural change to the airplane.

Israel’s Brenmiller Energy has announced the opening of a “gigafactory” to manufacture the company’s thermal energy storage systems, which store power as heat and then provide users with energy on demand via steam. The company believes it to be the first factory in the world of its kind.

Thermal energy storage, true to its name, stores energy as heat — a crucial function as society transitions to renewable sources like solar and wind, sources that are now economically viable to gather but, alas, are as variable as the weather and seasons.

Brenmiller is angling for the new facility to be their primary production hub and plans to hit full capacity by the end of 2023.

A team from NIST and the University of Colorado Boulder have developed a novel device using gallium nitride nanopillars on silicon that significantly improves the conversion of heat into electricity. This could potentially recover large amounts of wasted heat energy, benefiting industries and power grids.

Researchers at the National Institute of Standards and Technology (NIST) have fabricated a novel device that could dramatically boost the conversion of heat into electricity. If perfected, the technology could help recoup some of the heat energy that is wasted in the U.S. at a rate of about $100 billion each year.

The new fabrication technique — developed by NIST researcher Kris Bertness and her collaborators — involves depositing hundreds of thousands of microscopic columns of gallium nitride atop a silicon wafer. Layers of silicon are then removed from the underside of the wafer until only a thin sheet of the material remains. The interaction between the pillars and the silicon sheet slows the transport of heat in the silicon, enabling more of the heat to convert to electric current. Bertness and her collaborators at the University of Colorado Boulder recently reported the findings in the journal Advanced Materials.

The James Webb Space Telescope is so powerful that it can vividly see stars in a galaxy 17 million light-years away.

Astronomers pointed the most advanced space observatory ever built at the galaxy NGC 5,068, peering deep into its starry core. The greater goal is to better grasp how stars, like our energy-providing sun, form and evolve in galaxies. Crucially, Webb views a type of light that’s invisible to the naked eye, called infrared light. These long infrared light waves pierce through thick clouds of cosmic dust and gas, allowing us unprecedented views into galactic hearts.

“With its ability to peer through the gas and dust enshrouding newborn stars, Webb is the perfect telescope to explore the processes governing star formation,” the European Space Agency, which collaborates on the telescope with NASA and the Canadian Space Agency, wrote. Solar systems born enveloped in cosmic dust simply can’t be seen with visible light telescopes like Hubble, the space agency said.

The International Energy Agency just released its annual investment report. Here’s where the money is going.

Money makes the world go round.

The International Energy Agency just published its annual report on global investment in energy, where it tallies up all that cash. The world saw about $2.8 trillion of investments in energy in 2022, with about $1.7 trillion of that going into clean energy.

“For instance, in Japan, a battery tanker can carry power from regions with high renewable energy supply potential, such as Kyushu and Hokkaido, to high-demand areas of Honshu or for inter-island power transmission,” the company explained.

While electric propulsion vessels might be the future to decarbonize the shipping industry, there appears to be a need to haul stored renewable power to other grids worldwide via a new tanker class.

The quest to develop hydrogen as a clean energy source that could curb our dependence on fossil fuels may lead to an unexpected place—coal. A team of Penn State scientists found that coal may represent a potential way to store hydrogen gas, much like batteries store energy for future use, addressing a major hurdle in developing a clean energy supply chain.

“We found that can be this geological hydrogen battery,” said Shimin Liu, associate professor of energy and mineral engineering at Penn State. “You could inject and store the hydrogen energy and have it there when you need to use it.”

Hydrogen is a clean burning fuel and shows promise for use in the most energy intensive sectors of our economy—transportation, electricity generation and manufacturing. But much work remains to build a and make it an affordable and reliable energy source, the scientists said.