Blog

Archive for the ‘cosmology’ category: Page 72

Jan 7, 2024

Complexity, Evolution And Intelligence

Posted by in categories: biological, cosmology, evolution

Over the past few decades, it has become quite obvious that humans are not the only living organisms with intelligence.

The story of intelligence you are about to experience goes back 13.8 billion years, back to the moment the universe was born: the Big Bang. It’s a story of time and space, matter and energy. It is a story of unfolding, It’s the story of how the very nature of the physical universe from its very inception led to the universe getting to know itself and eventually, to reflect.

Continue reading “Complexity, Evolution And Intelligence” »

Jan 7, 2024

‘It could be profound’: How astronomer Wendy Freedman is trying to fix the universe

Posted by in category: cosmology

The problem is known as the Hubble tension, and it centers around figuring out a number for the universe’s expansion rate, called the Hubble constant. To find it, scientists have pored over tiny fluctuations in the cosmic microwave background (CMB) — an ancient relic of the universe’s first light — and built cosmic distance ladders to remote, pulsating stars called Cepheid variables.

But the best experiments using these two methods disagree. The difference in results may have seemed small, but it was enough to spark a major crisis in cosmology.

Wendy Freedman, an astrophysicist at the University of Chicago, has spent four decades studying the Hubble constant.

Jan 6, 2024

Is a black hole stuck inside the sun? No, but here’s why scientists are asking

Posted by in categories: cosmology, particle physics

To that end, Caplan is part of a crew that posits the dark matter portion of the dark universe could very well be made up of not particles like we imagine, but instead a huge number of atom-size black holes produced during the dawn of the universe, each of which is about as massive as a typical asteroid in our own solar system. “I think all dark matter candidates are just a little bit wild,” Caplan, who is an assistant professor of physics at Illinois State University, told Space.com. “Some guesses are better than others, and primordial black holes are taken seriously. I’ll go so far as to say I think they’re popular.”

But to turn the hypothesis into fact, he says, scientists have to actually find one of these miniscule ancient voids — which brings us to this new black-hole-sun conversation. Potentially, Caplan and his co-authors say in their papers, some of those ultrasmall black holes might’ve gotten caught up in dust clouds in the midst of forming stars. Potentially, they might’ve ended up literally lodged in those eventual sparkling oceans of plasma. Potentially, they might still be there.

So, no, there is probably not a black hole in the center of our star — but there might be other stars gallivanting through space with black holes indeed wedged within their hearts.

Jan 6, 2024

Neutron Stars — The Most Extreme Things that are not Black Holes

Posted by in categories: cosmology, futurism

Get your 12,020 SPACE Calendar here: https://shop.kurzgesagt.org/
WORLDWIDE SHIPPING IS AVAILABLE!
This year’s calendar focuses on the future of humanity and how we will explore space in the next 10,000 years.

We want to get you the best shipping fees. So If you’re located in the EU, please order from our EU-warehouse. If you’re located anywhere else in the world, please go to our World Wide Shop. (The link is the same you will be asked to choose your location once you are there.)
Thanks to everyone for the support!

Continue reading “Neutron Stars — The Most Extreme Things that are not Black Holes” »

Jan 5, 2024

A method to straighten curved space-time

Posted by in categories: cosmology, mathematics, particle physics, quantum physics

One of the greatest challenges of modern physics is to find a coherent method for describing phenomena, on the cosmic and microscale. For over a hundred years, to describe reality on a cosmic scale we have been using general relativity theory, which has successfully undergone repeated attempts at falsification.

Albert Einstein curved space-time to describe gravity, and despite still-open questions about or , it seems, today, to be the best method of analyzing the past and future of the universe.

To describe phenomena on the scale of atoms, we use the second great theory: , which differs from general relativity in basically everything. It uses flat space-time and a completely different mathematical apparatus, and most importantly, perceives reality radically differently.

Jan 5, 2024

Magnetic Mystique: A Deeper Look at Massive Star Systems

Posted by in categories: cosmology, evolution, physics

A new study reveals that magnetic fields are common in star systems with large blue stars, challenging prior beliefs and providing insights into the evolution and explosive nature of these massive stars.

Astronomers from the Leibniz Institute for Astrophysics Potsdam (AIP), the European Southern Observatory (ESO), and the MIT Kavli Institute and Department of Physics have discovered that magnetic fields in multiple star systems with at least one giant, hot blue star, are much more common than previously thought by scientists. The results significantly improve the understanding of massive stars and their role as progenitors of supernova explosions.

Characteristics of O-type Stars.

Jan 5, 2024

ESA’s 2023 Space Saga: From Jupiter’s Moons to Dark Matter Revelations [Video]

Posted by in categories: asteroid/comet impacts, cosmology, existential risks, satellites

2023 was a landmark year in space exploration for the European Space Agency (ESA), marked by significant missions like Juice’s journey to Jupiter, the launch of the Euclid space telescope for dark matter research, and the decommissioning of ESA’s Aeolus mission.

The year also saw advancements in Earth observation technologies, initiatives to address space debris, and collaborative efforts in asteroid impact studies. Notably, the Galileo satellite system’s new high-accuracy service and the first hardware tests for its second generation of satellites were significant milestones.

Jan 4, 2024

Supernova neutrinos could break physics — if we can make sense of them

Posted by in categories: cosmology, particle physics

Neutrinos produced inside an exploding star could betray exotic particles that would lead to a deeper theory of physics. Will our detectors be ready in time for the next nearby supernova?

Jan 4, 2024

NASA telescopes start tҺe year witҺ a double bang

Posted by in categories: cosmology, particle physics

A colorful, festive image sҺows different types of ligҺt containing tҺe remains of not one, but at least two exploded stars. TҺis supernova remnant is ƙnown as 30 Doradus B (30 Dor B for sҺort) and is part of a larger region of space wҺere stars Һave been continuously forming for tҺe past 8 to 10 million years. It is a complex landscape of darƙ clouds of gas, young stars, ҺigҺ-energy sҺocƙs, and superҺeated gas, located 160,000 ligҺt-years away from EartҺ in tҺe Large Magellanic Cloud, a small satellite galaxy of tҺe Milƙy Way.

TҺe new image of 30 Dor B was made by combining X-ray data from NASA’s CҺandra X-ray Observatory (purple), optical data from tҺe Blanco 4-meter telescope in CҺile (orange and cyan), and infrared data from NASA’s Spitzer Space Telescope (red). Optical data from NASA’s Hubble Space Telescope was also added in blacƙ and wҺite to ҺigҺligҺt sҺarp features in tҺe image.

A team of astronomers led by Wei-An CҺen from tҺe National Taiwan University in Taipei, Taiwan, Һave used over two million seconds of CҺandra observing time of 30 Dor B and its surroundings to analyze tҺe region. TҺey found a faint sҺell of X-rays tҺat extends about 130 ligҺt-years across. (For context, tҺe nearest star to tҺe sun is about four ligҺt-years away). TҺe CҺandra data also reveals tҺat 30 Dor B contains winds of particles blowing away from a pulsar, creating wҺat is ƙnown as a pulsar wind nebula.

Jan 4, 2024

Astronomers Detect New Pulsar Wind Nebula and its Associated Pulsar

Posted by in categories: cosmology, particle physics

Astronomers from the Western Sydney University in Australia and elsewhere report the detection of a new pulsar wind nebula and a pulsar that powers it. The discovery, presented in a paper published Dec. 12 on the pre-print server arXiv, was made using the Australian Square Kilometer Array Pathfinder (ASKAP), as well as MeerKAT and Parkes radio telescopes.

Pulsar wind nebulae (PWNe) are nebulae powered by the wind of a pulsar. Pulsar wind is composed of charged particles; when it collides with the pulsar’s surroundings, in particular with the slowly expanding supernova ejecta, it develops a PWN.

Particles in PWNe lose their energy to radiation and become less energetic with distance from the central pulsar. Multiwavelength studies of these objects, including X-ray observations, especially using spatially-integrated spectra in the X-ray band, have the potential to uncover important information about particle flow in these nebulae. This could unveil important insights into the nature of PWNe in general.

Page 72 of 405First6970717273747576Last