Blog

Archive for the ‘cosmology’ category: Page 7

Dec 12, 2024

Google Says It Appears to Have Accessed Parallel Universes

Posted by in categories: computing, cosmology, quantum physics

Google argued that its new uber-powerful quantum computer is so fast that it may have tapped a parallel universe.

Dec 12, 2024

Welcome to The Quantum Memory Matrix — Hypothesis Offers New Insight Into Black Hole Information Paradox

Posted by in categories: computing, cosmology, mathematics, quantum physics

A new hypothesis suggests that the very fabric of space-time may act as a dynamic reservoir for quantum information, which, if it holds, would address the long-standing Black Hole Information Paradox and potentially reshape our understanding of quantum gravity, according to a research team including scientists from pioneering quantum computing firm, Terra Quantum and Leiden University.

Published in Entropy, the Quantum Memory Matrix (QMM) hypothesis offers a mathematical framework to reconcile quantum mechanics and general relativity while preserving the fundamental principle of information conservation.

The study proposes that space-time, quantized at the Planck scale — a realm where the physics of quantum mechanics and general relativity converge — stores information from quantum interactions in “quantum imprints.” These imprints encode details of quantum states and their evolution, potentially enabling information retrieval during black hole evaporation through mechanisms like Hawking radiation. This directly addresses the Black Hole Information Paradox, which highlights the conflict between quantum mechanics — suggesting information cannot be destroyed — and classical black hole descriptions, where information appears to vanish once the black hole evaporates.

Dec 12, 2024

Advanced atom interferometer could help with ‘the embarrassing problem’ of dark matter

Posted by in categories: cosmology, particle physics

Assuming dark matter exists, its interactions with ordinary matter are so subtle that even the most sensitive instruments cannot detect them. In a new study, Northwestern University physicists now introduce a highly sensitive new tool, which amplifies incredibly faint signals by 1,000 times—a 50-fold improvement over what was previously possible.

Called an atom interferometer, the incredibly precise tool manipulates atoms with light to measure exceptionally tiny forces. But, unlike other atom interferometers, which are limited by the imperfections in the light itself, the new tool self-corrects for these imperfections to reach record-breaking levels of precision.

By boosting imperceptible signals to perceptible levels, the technological advance could help scientists who are hunting for ultra-weak forces emitted from a variety of evasive phenomena, including , and in unexplored frequency ranges.

Dec 11, 2024

Google says its new quantum chip indicates that multiple universes exist

Posted by in categories: computing, cosmology, quantum physics

Google on Monday announced Willow, its latest, greatest quantum computing chip. The speed and reliability performance claims Google’s made about this chip were newsworthy in themselves, but what really caught the tech industry’s attention was an even wilder claim tucked into the blog post about the chip.

Google Quantum AI founder Hartmut Neven wrote in his blog post that this chip was so mind-boggling fast that it must have borrowed computational power from other universes.

Ergo the chip’s performance indicates that parallel universes exist and “we live in a multiverse.”

Dec 11, 2024

Could Recent Discoveries in Gravity Fundamentally Change Physics?

Posted by in categories: cosmology, particle physics, quantum physics, satellites

For centuries, gravity has been one of the most captivating and puzzling forces in the universe. Thanks to the groundbreaking work of Isaac Newton and Albert Einstein, we have a robust understanding of how gravity governs the behavior of planets, stars, and even galaxies. Yet, when we look at extreme scenarios, such as the intense gravitational fields near black holes or the mysterious quantum world, our understanding starts to break down. New research and theories, however, suggest that the key to solving these mysteries may finally be within reach.

In our daily lives, gravity is a constant presence. It’s what keeps us grounded to the Earth, dictates the orbits of planets, and ensures that satellites stay in orbit around our planet. Thanks to Einstein’s general theory of relativity, scientists have been able to make highly accurate predictions about the movement of celestial bodies, calculate tides, and even send probes to the farthest reaches of the solar system.

Yet, when gravity’s effects become more extreme—such as inside black holes or during the birth of the universe—it becomes much more difficult to model. Similarly, when we turn our attention to the quantum realm of subatomic particles, Einstein’s theory breaks down. To understand phenomena like the Big Bang or the inner workings of black holes, physicists have long known that we need a new, unified theory of gravity.

Dec 11, 2024

Forget Black Holes — White Holes Would Break Your Puny Brain

Posted by in categories: cosmology, evolution, information science, neuroscience, singularity

Black holes have long fascinated scientists, known for their ability to trap anything that crosses their event horizon. But what if there were a counterpart to black holes? Enter the white hole—a theoretical singularity where nothing can enter, but energy and matter are expelled with immense force.

First proposed in the 1970s, white holes are essentially black holes in reverse. They rely on the same equations of general relativity but with time flowing in the opposite direction. While a black hole pulls matter in and lets nothing escape, a white hole would repel matter, releasing high-energy radiation and light.

Despite their intriguing properties, white holes face significant scientific challenges. The laws of thermodynamics, particularly entropy, make it improbable for matter to move backward in time, as white holes would require. Additionally, introducing a singularity into the Universe without a preceding collapse defies current understanding of cosmic evolution.

Dec 11, 2024

Groundbreaking study suggests our universe is an expanding bubble in a higher dimension

Posted by in category: cosmology

The Bubble Universe: A Bold New Theory

Researchers at Uppsala University in Sweden have introduced a revolutionary theory suggesting that our Universe exists as a four-dimensional bubble within a higher-dimensional space. This bubble concept is part of an attempt to unravel the mystery of dark energy, the enigmatic force causing the Universe’s rapid expansion.

Dec 11, 2024

Hubble Telescope sees ‘weird things’ in closest-ever look at a quasar from monster black hole

Posted by in category: cosmology

With the imaging spectrograph blocking out the bright light from the region at the heart of the quasar, Hubble was able to see the structure around the black hole like never before.

Bin Ren of the Côte d’Azur Observatory and Université Côte d’Azur in France explained in a NASA statement that Hubble found lots of “weird things” around the feeding supermassive black hole powering 3C 273.

“We’ve got a few blobs of different sizes and a mysterious L-shaped filamentary structure,” Ren said. “This is all within 16,000 light-years of the black hole.”

Dec 11, 2024

Chandra sees black hole jet stumble into something in the dark

Posted by in categories: cosmology, particle physics

Even matter ejected by black holes can run into objects in the dark. Using NASA’s Chandra X-ray Observatory, astronomers have found an unusual mark from a giant black hole’s powerful jet striking an unidentified object in its path.

The discovery was made in a galaxy called Centaurus A (Cen A), located about 12 million light-years from Earth. Astronomers have long studied Cen A because it has a supermassive black hole in its center sending out spectacular jets that stretch out across the entire galaxy. The black hole launches this jet of high-energy particles not from inside the black hole, but from intense gravitational and magnetic fields around it.

Continue reading “Chandra sees black hole jet stumble into something in the dark” »

Dec 11, 2024

Cosmic rays’ vast energy traced to magnetic turbulence

Posted by in categories: cosmology, particle physics

Ultra-high energy cosmic rays, which emerge in extreme astrophysical environments—like the roiling environments near black holes and neutron stars—have far more energy than the energetic particles that emerge from our sun. In fact, the particles that make up these streams of energy have around 10 million times the energy of particles accelerated in the most extreme particle environment on earth, the human-made Large Hadron Collider.

Where does all that energy come from? For many years, scientists believed it came from shocks that occur in extreme astrophysical environments—when, for example, a star explodes before forming a black hole, causing a huge explosion that kicks up particles.

That theory was plausible, but, according to new research published in The Astrophysical Journal Letters, the observations are better explained by a different mechanism. The source of the cosmic rays’ energy, the researchers found, is more likely magnetic turbulence. The paper’s authors found that magnetic fields in these environments tangle and turn, rapidly accelerating particles and sharply increasing their energy up to an abrupt cutoff.

Page 7 of 426First4567891011Last