Toggle light / dark theme

Space-time back and forth?

Time moving forwards and backward in plank time intervals? It is a legitimate possibility in physics since matter and anti-matter are identical in every aspect but mirror each other. Electrons, positrons, and other particles oppose each other as matter and anti-matter.

I argue that empty space-time acts as two mirror fields, causing matter to behave like anti-matter. The same matter in the opposite space-time field (reverse time) acts as anti-matter. As time progresses in a Möbius-like shape moves forward, and A 720-degree rotation needs to come back to its original state. These back-and-forth rapid flips cause all matter within our universe to be cut into quanta or packets, Showing packets and wave characters. while in the backward arrow of time, everything flips and is shown as anti-matter.

Space-time does not advance in time in 1 direction only, as its fields change backward and forward as frequently as Planck time remains constant, only changing directions rapidly between positive and negative (past and future), meaning time goes backward and forward, while matter within this space-time also mirrors itself. However, matter moves forward in our time-space universe towards the future since we can add all the Planck times in positive space-time intervals (we are sensing in our mind only the positive space-time intervals). Our universe is the sum of the positive side of space-time, while there is another parallel anti-universe with antimatter in negative space-time. These two universes never meet and move parallel to each other. We don’t notice the mirror universe in which our mirror self exists since the present time is only 1 plank time. next plank time will be the future and previous is already in the past.

Cosmological model proposes dark matter production during pre-Big Bang inflation

As physicists continue their struggle to find and explain the origin of dark matter, the approximately 80% of the matter in the universe that we can’t see and so far haven’t been able to detect, researchers have now proposed a model where it is produced before the Big Bang.

Their idea is that dark matter would be produced during a infinitesimally short inflationary phase when the size of the universe quickly expanded exponentially. The new model was published in Physical Review Letters by three scientists from Texas in the US.

An intriguing idea among cosmologists is that dark matter was produced through its interaction with a thermal bath of some species, and its abundance is created by “freeze-out” or “freeze-in.” In the freeze-out scenario, dark matter is in chemical equilibrium with the bath at the earliest times—the concentration of each does not change with time.

Delayed Big Bang for dark matter could be detected in gravitational waves

Was dark matter created some time after the Big Bang? Gravitational wave detectors could soon find the answer.


For now, the duo’s results suggest that the Dark Big Bang is far less constrained by past observations than Freese and Winkler originally anticipated. As Ilie explains, their constraints could soon be put to the test.

“We examined two Dark Big Bang scenarios in this newly found parameter space that produce gravitational wave signals in the sensitivity ranges of existing and upcoming surveys,” he says. “In combination with those considered in Freese and Winkler’s paper, these cases could form a benchmark for gravitational wave researchers as they search for evidence of a Dark Big Bang in the early universe.”

Video: Black holes — here’s what they are and why scientists are still puzzled

Black holes are some of the most mysterious phenomena in space that have puzzled scientists ever since their discovery. Extreme levels of gravitational pull suck in everything around the black hole, even light. Black holes are the complete absence of any source of light, resulting in total darkness.

According to a video posted by the popular YouTube channel Riddle, a black hole’s origins can be traced back to a star that has burnt up and turned into a supernova. One of the largest known black holes has a mass that is forty billion times larger than our sun in our solar system. This black hole is situated in a galaxy called “Holmberg 15A,” which is approximately 700 million lightyears away.

When any matter approaches a black hole, several different events occur. One of these outcomes is known as the “accretion disk,” which changes the properties of the item approaching the black hole. Although black holes are typically associated as ever present and enduring vacuums that continuously “take,” they eventually dissipate over time.

Improved spin and density correlation simulations give researchers clearer insights on neutron stars

When a star dies in a supernova, one possible outcome is for the remains to become a neutron star. Inside a neutron star, the protons and electrons combine into uncharged neutrons. This substance is called neutron matter.

A team of researchers from the United States, China, Turkey, and Germany has performed (i.e., from the most fundamental principles) simulations to calculate spin and density correlations in matter. They used realistic nuclear interactions at higher densities of neutrons than previously explored. Spin and density are the probability of finding a neutron in a particular position with a particular direction of . These correlations determine key aspects of how neutrinos scatter and heat up in a core-collapse supernova.

The research is published in the journal Physical Review Letters.

Record-breaking run on Frontier sets new bar for simulating the universe in exascale era

The universe just got a whole lot bigger—or at least in the world of computer simulations, that is. In early November, researchers at the Department of Energy’s Argonne National Laboratory used the fastest supercomputer on the planet to run the largest astrophysical simulation of the universe ever conducted.

The achievement was made using the Frontier supercomputer at Oak Ridge National Laboratory. The calculations set a new benchmark for cosmological hydrodynamics simulations and provide a new foundation for simulating the physics of atomic matter and dark matter simultaneously. The simulation size corresponds to surveys undertaken by large telescope observatories, a feat that until now has not been possible at this scale.

“There are two components in the universe: —which as far as we know, only interacts gravitationally—and conventional matter, or atomic matter,” said project lead Salman Habib, division director for Computational Sciences at Argonne.

More comprehensive search for sterile neutrinos comes up empty

Particle physicists have been looking for so-called “sterile neutrinos” for a few decades now. They are a hypothesized particle that would have a tiny mass like the three known neutrinos but would not interact by the weak force or any other Standard Model force, only through gravitational interactions.

Its existence—or their existence—would solve some anomalies seen in , help answer questions beyond the Standard Model of particle physics, and, if massive enough, could explain cold dark matter or warm dark matter.

But have not been seen in any particle experiments, despite many attempts. Now an experiment by the IceCube Collaboration has used 10.7 years of data from their detector near the Amundsen-Scott South Pole Station to lower the probability that at least one sterile neutrino does not exist. Their paper appears in Physical Review Letters.