Toggle light / dark theme

Brightest Space Explosion Ever May Hide an Elusive Dark Matter Particle

In October 2022, scientists detected the explosive death of a star 2.4 billion light-years away that was brighter than any ever recorded.

As the star’s core collapsed down into a black hole, the gamma-ray burst emitted by the star – an event named GRB 221009A – erupted with energies of up to 18 teraelectronvolts. Gamma-ray bursts are already the brightest explosions our Universe can produce; but GRB 221009A was an absolute record-smasher, earning it the moniker “the BOAT” – Brightest Of All Time.

There is, however, something wrong with the picture, according to a team of astrophysicists led by Giorgio Galanti of the National Institute for Astrophysics (INAF) in Italy. Based on cutting-edge models of the Universe, we shouldn’t be able to see photons more powerful than 10 teraelectronvolts in data from the Large High Altitude Air Shower Observatory (LHAASO) that made the detection.

Multiverse simulation: Robotic AI is about to accelerate sharply

The AI behavior models controlling how robots interact with the physical world haven’t been advancing at the crazy pace that GPT-style language models have – but new multiverse ‘world simulators’ from Nvidia and Google could change that rapidly.

There’s a chicken-and-egg issue slowing things down for AI robotics; large language model (LLM) AIs have enjoyed the benefit of massive troves of data to train from, since the Internet already holds an extraordinary wealth of text, image, video and audio data.

But there’s far less data for large behavior model (LBM) AIs to train on. Robots and autonomous vehicles are expensive and annoyingly physical, so data around 3D representations of real-world physical situations is taking a lot longer to collect and incorporate into AI models.

The LZ experiment’s first science run sets new constraints on dark matter interactions

The LUX ZEPLIN (LZ) Dark Matter experiment is a large research effort involving over 200 scientists and engineers at 40 institutions worldwide. Its key objective is to search for weakly interacting massive particles (WIMPs) by analyzing data collected by the LZ detector, situated at the Sanford Underground Research Facility in South Dakota.

The LZ Collaboration recently released the results of the first experimental run of the LZ experiment. These results, published in Physical Review Letters, set new constraints on the interactions between dark matter and other particles, which could inform future searches for weakly-interacting dark matter candidates.

“There is no reason to believe that dark matter will interact with regular matter in the simplest way, so it is important to consider more ,” Sam Eriksen, co-author of the paper, told Phys.org.

Gamma-ray outburst detected from the radio source 3C 216

Using NASA’s Fermi space telescope, Italian astronomers have observed a radio source known as 3C 216. As a result, they detected increased gamma-ray activity from this source, including a strong outburst. The finding is reported in a research paper published on the arXiv preprint server.

3C 216 is an extragalactic radio source at a redshift of approximately 0.67, with a projected linear size of about 182,500 light years. It has an overall steep radio spectrum and a relatively compact morphology. Therefore, it is classified as a compact steep spectrum (CSS) object.

Previous observations of 3C 216 have found that it is a radio galaxy consisting of a central component surrounded by a more extended structure, and has an inner relativistic jet. It turns out that this galaxy is associated with source 4FGL J0910.0+4257.

Physicists achieve simulation of non-Hermitian skin effect in 2D with ultracold fermions

A research team led by The Hong Kong University of Science and Technology (HKUST) has achieved a groundbreaking quantum simulation of the non-Hermitian skin effect in two dimensions using ultracold fermions, marking a significant advance in quantum physics research.

Quantum mechanics, which typically considers a well-isolated system from its environment, describes ubiquitous phenomena ranging from electron behavior in solids to information processing in quantum devices. This description typically requires a real-valued observable—specifically, a Hermitian model (Hamiltonian).

The hermiticity of the model, which guarantees conserved energy with real eigenvalues, breaks down when a quantum system exchanges particles and energy with its environment. Such an open quantum system can be effectively described by a non-Hermitian Hamiltonian, providing crucial insights into , curved space, non-trivial topological phases, and even black holes. Nevertheless, many questions about non-Hermitian quantum dynamics remain unanswered, especially in higher dimensions.

Higgs Boson Breakthrough What Scientists Just Discovered!

Visit our website for up-to-the-minute updates:
www.royaltyside.blogspot.com.

Follow us.
Facebook: www.facebook.com/royaltysides.
Twitter: www.x.com/RoyaltySide.
Instagram : www.instagram.com/royaltysideofficial/

#royaltyside #NASA #Astronomy#HiggsBoson #GodParticle #ParticlePhysics #LargeHadronCollider #HiggsField #PhysicsBreakthrough #ScienceNews #StandardModel #MaxPlanckInstitute #LHC #CERN #PhysicsDiscovery #ScienceExplained #HL-LHC #HiggsMechanism #DarkMatter #DarkEnergy #Cosmology #QuantumPhysics #NewPhysics #Wboson #Zboson #Quarks #ScientificBreakthrough #HiggsDecay #CharmQuarks #ParticleInteraction #HiggsResearch #BeyondPhysics #PhysicsRevolution #ScientificDiscovery