Toggle light / dark theme

The two planets came as close as within a quarter-of-a-degree, or about 50% of the angular size of the lunar disk.

Lorenzo Di Cola also captured the conjunction over L’Aquila Italy. Both Jupiter and Mars were visible to the naked eye in the constellation Taurus during the cozy meet-up.

The photographer also took this amazing composition image made up of nine interval timer photos showing the two planets rising through the sky. Mars and Jupiter are visible in conjunction and if you look carefully you can even see some of Jupiter’s moons.

Scientists Can Now Test for Extra Dimensions and Unveil New Realities with the LHC

TL;DR

The Large Hadron Collider (LHC) is pushing the boundaries of physics by enabling scientists to search for the Higgs Boson, explore the mysteries of dark matter, and potentially detect evidence of extra dimensions. Despite wild conspiracy theories claiming the LHC could open portals to parallel dimensions or create black holes, the reality is grounded in groundbreaking scientific exploration. The LHC may even briefly produce microscopic black holes, offering insights into the existence of extra dimensions without any danger to our planet. These discoveries could revolutionise our understanding of the universe.

Avshalom Elitzur, Claudia de Rham and Harry Cliff debate the relationship between mystery and scientific discovery.

Does science eradicate mystery or expand it?

Watch the full debate at https://iai.tv/video/mystery-in-the-m

We have the impression that science unravels the mysteries of the universe. But with every mystery solved, a new mystery emerges. The Big Bang gave us an explanation for the expanding universe but left the mystery of how it came about. Quantum mechanics accounted for the strange behaviour of subatomic particles, but led to the puzzle of its conflict with relativity. Dark energy made sense of an accelerating universe but led to the mystery of why we have no evidence for it. Is there a danger that we are making a fundamental mistake in imagining science can eradicate mystery, and do we need to think of science differently as a consequence?

Follow Closer To Truth on X (Twitter) for news, articles, and updates, plus connect with other viewers: https://shorturl.at/imHY9

That the universe began seems astonishing. What brought it about? What forces were involved? How did the laws of nature generate the vast expanse of billions of galaxies of billions of stars and planets in the structures that we see today? What new physics was involved? What more must we learn?

Get exclusive member benefits with a free Closer To Truth account: https://closertotruth.com/

Alexander Vilenkin is the Leonard and Jane Bernstein Professor and Director of the Institute of Cosmology at Tufts University. A theoretical physicist who has been working in the field of cosmology for 35 years, Vilenkin has written over 150 papers and is responsible for introducing the ideas of eternal inflation and quantum creation of the universe from nothing. His work in cosmic strings has been pivotal.

Researchers at the University of Colorado, Boulder; KU Leuven; the Flatiron Institute and the University of Wisconsin–Madison recently set out to answer a long-standing research question, specifically whether charged particles in the turbulent flows commonly surrounding black holes and other compact objects can be accelerated to very high energies.

The striking object appeared as bright as Saturn in the vicinity of the constellation Cassiopeia, and historical chronicles from China and Japan recorded it as a “guest star.”

Chinese astronomers used this term to signify a temporary object in the sky, often a comet or, as in this case, a supernova — a cataclysmic explosion of a star at the end of its life.

The object, now known as SN 1,181, is one of a handful of supernovas documented before the invention of telescopes, and it has puzzled astronomers for centuries.

Something seems to be missing from the universe, and the favored model of physics calls it “dark matter” – but despite a century of searching, it remains a no-show. A new paper proposes an alternative hypothesis, showing how gravity could exist without mass and produce many of the same effects we ascribe to dark matter.

Einstein’s theory of general relativity is still our best model for describing gravity. As you might remember from high school physics class, gravity is the force that arises from masses resting on the fabric of spacetime. The more mass an object has, the deeper the “dip” in spacetime and the stronger the gravitational pull.

But starting in the 1930s, some strange astronomical observations began to raise questions. Galaxy clusters seemed to be moving much too fast to stay stable based on visible matter, suggesting that far more matter was present than we could see. That led to the hypothesis that huge amounts of invisible stuff – which was dubbed dark matter – pervaded the universe. The idea has held surprisingly strong in observations in the decades since, backed up by the motions of stars within galaxies and the bending and magnifying of light through gravitational lenses.