Sep 13, 2016
Worm holes- the sad existence of a path impossible to travel
Posted by Karen Hurst in category: cosmology
The existence of worms holes has been long debated and has even become a staple in science fiction.
( source )
The existence of worms holes has been long debated and has even become a staple in science fiction.
( source )
A black hole is a physicist’s playground: A place where some of the most bizarre and fundamental concepts in physics can be observed and tested. However, there is currently no way to directly observe black holes in action; these bodies of matter don’t emit the sort of radiation, like light or X-rays, that telescopes are equipped to detect. Fortunately, physicists have figured out ways to imitate the conditions of a black hole in the lab—and in creating analogues of black holes, they are beginning to unravel some the most fascinating puzzles in physics.
Jeff Steinhauer, a researcher in the Physics Department of Technion-Israel Institute of Technology, recently caught the attention of the physics community when he announced that he had used an analogue black hole to confirm Stephen Hawking’s 1974 theory that black holes emit electromagnetic radiation, known as Hawking radiation. Hawking predicted that this radiation would be caused by the spontaneous creation of a particle-antiparticle pair at the event horizon, the point at the edge of a black hole beyond which nothing—not even light—can escape. Under the terms of Hawking’s theory, as one of the particles crosses the event horizon and is captured by the black hole, the other would be ejected into space. Steinhauer’s experiment was the first to exhibit the sort of spontaneous fluctuations that support Hawking’s calculations.
Physicists have cautioned that this experiment still doesn’t confirm the existence of Hawking radiation in astronomical black holes, as Steinhauer’s black hole isn’t exactly the same as one we might observe in space. It’s not yet physically possible to create the intense gravitational fields that form black holes. Instead, the analogue imitates a black hole’s ability to absorb light waves by using sound.
Continue reading “Benchtop Black Holes Help Physicists Glimpse the Quantum Universe” »
Dwarf galaxies are enigmas wrapped in riddles. Although they are the smallest galaxies, they represent some of the biggest mysteries about our universe. While many dwarf galaxies surround our own Milky Way, there seem to be far too few of them compared with standard cosmological models, which raises a lot of questions about the nature of dark matter and its role in galaxy formation.
New theoretical modeling work from Andrew Wetzel, who holds a joint fellowship between Carnegie and Caltech, offers the most accurate predictions to date about the dwarf galaxies in the Milky Way’s neighborhood. Wetzel achieved this by running the highest-resolution and most-detailed simulation ever of a galaxy like our Milky Way. His findings, published by The Astrophysical Journal Letters, help to resolve longstanding debates about how these dwarf galaxies formed.
One of the biggest mysteries of dwarf galaxies has to do with dark matter, which is why scientists are so fascinated by them.
Intel has planted some solid stakes in the ground for the future of deep learning over the last month with its acquisition of deep learning chip startup, Nervana Systems, and most recently, mobile and embedded machine learning company, Movidius.
These new pieces will snap into Intel’s still-forming puzzle for capturing the supposed billion-plus dollar market ahead for deep learning, which is complemented by its own Knights Mill effort and software optimization work on machine learning codes and tooling. At the same time, just down the coast, Nvidia is firming up the market for its own GPU training and inference chips as well as its own hardware outfitted with the latest Pascal GPUs and requisite deep learning libraries.
While Intel’s efforts have garnered significant headlines recently with that surprising pair of acquisitions, a move which is pushing Nvidia harder to demonstrate how GPU acceleration (thus far the dominant compute engine for model training), they still have some work to do to capture mindshare for this emerging market. Further complicating this is the fact that the last two years have brought a number of newcomers to the field—deep learning chip upstarts touting the idea that general purpose architectures (including GPUs) cannot compare to a low precision, fixed point, specialized approach. In fact, we could be moving into a “Cambrian explosion” for computer architecture–one that is brought about by the new requirements of deep learning. Assuming, of course, there are really enough applications and users in a short enough window that the chip startups don’t fall over waiting for their big bang.
Continue reading “The Next Wave of Deep Learning Architectures” »
There are many theoretical models to explain such aspects of high energy physics as dark matter, theory of inflation, bariosynthesis, the Higgs mechanism, etc. The discovery of universal expansion is accelerating, precise measurements of characteristics of the cosmic microwave background, and indirect confirmations of the existence of dark matter have significantly advanced observational and theoretical cosmology. The connection between cosmological processes in the early universe and physics of elementary particles is getting clearer. Theories with additional compact measurements (multidimensional gravity) have contributed to the explanation of a series of phenomena in cosmology and the physics of elementary particles including inflation, baryon asymmetry, black holes and dark matter. Multidimensional gravity may become one of the basics of fundamental theoretical physics.
The development of colliders led to the discovery of a number of new particles, which was a great confirmation of the Standard Model ℠ of particle physics. The real SM triumph was the discovery of the Higgs boson in LHC experiments in CERN. However, despite the success of SM in high-energy physics, there is a series of questions and problems that can’t be explained by it—for example, baryon asymmetry, the origin of the Higgs field, the production of the early quasars, etc.
A theoretical direction, which is based on the idea of multidimensional gravity, is being developed at the MEPhI Department № 40 under the supervision of Professor S.G. Rubin. For the past several years, interesting results have been obtained on the basis of this research. In a thesis by Alexey Grobov titled “Effects of extra spaces in particle physics and cosmology,” multidimensional gravitational models contribute to better understanding of connections between astrophysics and microphysics phenomena.
Two separate experiments at the Large Hadron Collider at the European Organisation for Nuclear Research, on the French-Swiss border, appear to confirm the existence of a subatomic particle, the Madala boson, that for the first time could shed light on one of the great mysteries of the universe — dark matter.
String theory arrived in the public field in 1988 when a BBC radio series Desperately Seeking Superstrings was aired. Thanks to good marketing and its naturally curious name and characteristics, it is now part of popular discourse, mentioned in TV’s Big Bang Theory, Woody Allen stories, and countless science documentaries.
Is there another one of you out there in a separate, parallel universe? This video explains the science (and misconceptions) of parallel universes.
Might nature’s bottomless pits actually be ultra-efficient quantum computers? That could explain why data never dies.
Cracks are showing in the dominant explanation for dark matter. Is there anything more plausible to replace it?
By Lee Billings on August 31, 2016