Toggle light / dark theme

MANILA, Philippines — A mobile and SMS application developed by IT professionals Revbrain G. Martin, Marie Jeddah Legaspi, and Julius Czar Torreda to help fishermen receive real-time weather, sunrise and sunset, wind speed, and cloud coverage to plan their fishing activity, and an emergency checklist kit app was developed by students Jeorge Loui P. Delfin, Bluen Ginez, Samuel Jose, Rainier Garcia Narboneta, and Eugenio Emmanuel A. Araullo for disaster preparedness won the NASA Space Apps Challenge on October 19–21 at De La Salle University in Manila, Philippines, in partnership with the Embassy of the United States of America and PLDT.

Other projects and solutions developed are games using images from the Hubble Space Telescope, augmented reality mobile app to tell a story of the changes in the Arctic and Antarctic ice, artificial intelligence app helping scientists confirm the habitability of exoplanets, and story-based game using NASA Earth imagery.

They joined together with teams of coders, scientists, designers, storytellers, makers, builders, technologists, thinkers, designers, entrepreneurs, and everyone around the globe working together in a 48-hour sprint to develop solutions to some of the most pressing challenges on Earth and in space, using NASA resources and data.

Since its inception in 2012, the International Space Apps Challenge has become the world’s largest global hackathon, engaging thousands of global citizens to collaborate in building innovative solutions to complex challenges using NASA’s open data. Hackathons are technology development marathons that draw on the talents and initiative of bright-minded people. Space Apps inspires local innovation communities to convene, cooperate, and create. On 2016, Tzar C. Umang brought Space Apps in Dagupan, Pangasinan while Art Polo Gabriel III, Wilson Censon, and Tito Mari Francis Escaño organized one in PLDT InnoLab in Metro Manila. De La Salle — College of Saint Benilde hosted Space Apps on 2017.

A day-long data bootcamp held on October 19 to learn new concepts, strategies and skills from keynote speakers, panelists and mentors. Michael Carroll from Urban Engine in Huntsville, AL and Dr. Patricia Jacobberger, the Senior Advisor in NASA Earth Science Division, introduced Space Apps through a virtual talk while U.S. Embassy Science Fellow Dr. Anondo Mukherjee and U.S. Fulbright fellow Sarah Marie Hartman gave an online lecture about the Earth’s environment. Acting Director Dr. Joel Joseph S. Marciano, Jr. of DOST-Advanced Science and Technology Institute and Program Leader Dr. Marc Caesar R. Talampas of PHL-Microsat discussed microsatellite development in the Philippines.

Several mentors coming from different backgrounds taught participants in the data bootcamp in the form of stardust stations. Stardust stations is an alternative to a lecture format and encourages learning through participatory activities. A stardust station can show applications of data, demonstrate simple hardware projects or teach other hackathon skills. Neil Patrick Del Gallego and Jordan Deja from De La Salle University taught augmented reality and user experience, respectively. Engr. Ariston N. Gonzalez, Lorenzo Sabug, Jr., Benjamin Joseph D. Jiao, and Carlo Dizon Pastoral from PHL-Microsat discussed using Diwata-1 API. Animo Labs incubatee Simon Gregory Mabanta discuss about educational robotics. John Luis Garcia, Dennis Magsajo, and Randy Bardaje taught using Amazon Web Services cloud. Art Polo Gabriel III, the organizer of Space Apps 2016 from Mobility IT 4 Youth, explained the use cases of smartglass applications.

During the hackathon period on October 20–21, teams are expected to find solutions to themed challenges put forth by NASA. They work together with the rest of the world on hackathon weekend to devise creative and innovative solutions to these challenges. Projects Apps projects don not have to be apps and anyone does not need to become a computer programmer to participate. Participants collaborate to build anything — from open-source software, hardware, data visualizations, and citizen science platforms, to videos, art, and other communications solutions — aimed at addressing global challenges.

The overarching theme of the 2018 challenges is “Earth and Space,” underscoring the connections between major challenges, and the potential solutions to them, both on Earth and in space. The 2018 mainstage Space Apps event was hosted by Urban Engine in the U.S. Space and Rocket Center at Huntsville, AL, also known as “The Rocket City.”

YSEALI alumni Ryan Madrid and Malcolm Flores, Dr. Jasmine Albelda from the Philippine Nuclear Research Institute, entrepreneur Ibba Bernardo, and technologists like Cristopher David and Simon Gregory Mabanta served as mentors in the hackathon proper. IdeaSpace and Animo Labs looked upon promising projects and solutions that might have a business potential. Sentinel Hub, Neustar, Amazon Web Services, Microsoft, and IBM offered the use of their technologies for the participants during the hackathon.

After the development period, teams are expected to provide a four-minute presentation about their projects and solutions. Deputy Chief of Mission John Law of the Embassy of the United States of America to the Philippines, Leandro T. Santos, Head of PLDT Enterprise Core Business Research and Development, Deputy Executive Director Engr. Raul C. Sabularse of DOST-Philippine Council for Industry, Energy and Emerging Technology Research and Development, Senior Planning Officer Yvette M. Cabrera from the Department of Information and Communications Technology, Executive Director Federico C. Gonzalez of Animo Labs served as jurors for the Space Apps hackathon.

Jeanie Duwan, Randolf Mariano, and Xavier Lara from the American Spaces Philippines of the US Embassy and Christine M. Abrigo, Donna Labangon, and Kevin Anthony Kaw from De La Salle University organized Space Apps in the Philippines on 2018. Space Apps Philippines lead organizer Michael Lance believes that Filipinos can build projects and open-source solutions that address real-world problems, on Earth and in space. #SpaceApps #SpaceAppsPH

Many of the objects NASA and other scientific bodies choose to study in space are incredibly old, but that’s not the case with Kes 75. Located a mere 19,000 light years from Earth, Kes 75 is a ultra-dense chunk of a star that went supernova, and now scientists are calling it the youngest known pulsar in the Milky Way galaxy.

In a new post on its website, NASA explains how the pulsar was detected and shows off a pretty stunning image of what it looks like from our vantage point.

Read more

The pulsar is roughly 500-years-old and was spotted with the help of NASA’s Chandra X-Ray Observatory.

Astronomers have managed to locate the youngest pulsar in the Milky Way, NASA announced yesterday. Dubbed PSR J1846-0258, the pulsar was spotted inside one of our galaxy’s supernova remnants — found 19,000 light-years away from our planet, in the Aquila constellation (The Eagle).

This exciting discovery — first detailed in a study published earlier this year in The Astrophysical Journal — could shed more light into supernova explosions and the new beginnings that arise from the death of a stellar giant.

Read more

The engines of the most famous vessel in the “Star Trek” universe, the USS Enterprise, are powered by the annihilation of matter and antimatter, a process that produces energy in the form of gamma rays. More than half the gamma-ray sources cataloged by the Fermi mission come from a different type of engine — supermassive black holes in the cores of distant galaxies.

Most large galaxies harbor monster black holes millions to billions of times more massive than the Sun. When matter falls toward a supermassive black hole, the center of the host galaxy emits far more light than normal and may flare up unpredictably. Astronomers say such galaxies possess active galactic nuclei, or AGN for short.

Fermi sees the universe in gamma rays, the most energetic form of light. In its first four years, Fermi found more than 1,500 gamma-ray AGN, and it continues to find more.

Read more

A RUDN physicist demonstrated how to describe the shape of any symmetrical wormhole—a black hole that theoretically can be a kind of a portal between any two points in space and time—based on its wave spectrum. The research would help understand the physics of wormholes and better identify their physical characteristics. The article was published in the Physics Letters B journal.

Modern concepts of the universe provide for the existence of wormholes—unusual curvatures in space and time. Physicists imagine a as a black hole through which one can see a distant point of the universe in four dimensions. Astrophysicists are still unable to determine the shape and sizes of precisely, let alone theoretical wormholes. A RUDN physicist has now demonstrated that the shape of a wormhole can be calculated based on observable .

In practice, physicists can observe only indirect properties of wormholes, such as red shift—a downward shift in the frequency of gravitational waves in the course of moving away from an object. Roman Konoplya, a research assistant from the RUDN Institute of Gravitation and Cosmology, the author of the work, used quantum mechanical and geometrical assumptions and showed that the shape and mass of a wormhole can be calculated based on the red shift value and the range of gravitational waves in high frequencies.

Read more

Our universe is permeated with a vast, unseen force that seems to oppose gravity. Physicists call this force dark energy, and it is thought to be constantly pushing our universe outward.

But in June, a group of physicists published a paper in the preprint journal arXiv implying that dark energy changes over time. This means that the universe will not expand forever but might eventually collapse into the size it was before the Big Bang.

Almost immediately, however, physicists found problems with the theory: Several independent groups subsequently published papers that suggested revisions to the conjecture. Now, a paper published on Oct. 2 in the journal Physical Review D suggests that, as it stands, the original conjecture can’t be true because it can’t explain the existence of the Higgs boson — which we know exists, thanks to the Large Hadron Collider, the massive particle collider on the border between France and Switzerland. [Beyond Higgs: 5 Elusive Particles That May Lurk in the Universe].

Read more

Dark matter supposedly makes up 85% of the matter in the universe, but so far, efforts to catch hypothesized dark matter particles have all ended in failure. Weakly interacting massive particles (WIMPs) are no-shows at grand experiments housed in Italy, Canada, and the United States. Even tinier axions have not been detected either. Neutralinos, born out of supersymmetry, may look nice on paper but so far have no bearing on reality.

Read more

The standard model of modern cosmology is unthinkable without dark matter, although direct detections are still missing. A broad perspective of how dark matter was postulated and became accepted is presented, from prehistory, over observations of galaxy clusters, galaxy rotation curves, the search for baryonic dark matter, possible alternative explanations via modified gravity, up to the hunt for dark matter particles. The interplay is described between observational discoveries and theoretical arguments which led finally to the adoption of this paradigm.

Read more