Toggle light / dark theme

Smarter thread

I never get tired in circuitry thread and any new findings.


Tufts University engineers say that revolutionary health diagnostics may be hanging on a thread—one of many threads they have created that integrate nano-scale sensors, electronics and microfluidics into threads ranging from simple cotton to sophisticated synthetics. “We think thread-based devices could potentially be used as smart sutures for surgical implants, smart bandages to monitor wound healing, or integrated with textile or fabric as personalized health monitors and point-of-care diagnostics,” says Sameer Sonkusale, Ph.D., director of the interdisciplinary Nano Lab in the Department of Electrical and Computer Engineering at Tufts School of Engineering, Medford/Somerville, Mass.

Researchers dipped a variety of conductive threads in physical and chemical sensing compounds and connected them to wireless electronic circuitry. The threads, sutured into tissues of rats, collected data on tissue health (pressure, stress, strain and temperature), pH and glucose levels. The data helps determine how wounds are healing, whether infection is emerging or whether the body’s chemistry is out of balance. Thread’s natural wicking properties draw fluids to the sensing compounds. Resulting data is transmitted wirelessly to a cell phone and computer.

To date, substrates for implantable devices have been two-dimensional, expensive and difficult to process, making them suitable for flat tissue, such as skin, but not for organs. “By contrast, thread is abundant, inexpensive, thin and flexible, and can be easily manipulated into complex shapes,” says Pooria Mostafalu, Ph.D., postdoctoral research fellow with the Harvard-MIT Division of Health Sciences and Technology and former Tufts doctoral student.

The First Reprogrammable Quantum Computer Has Been Created

In Brief.

Researchers have published a paper demonstrating how they were able to create the first fully programmable and reprogrammable quantum computer in the world. Other quantum computers in existence at the moment can only run one type of operation.

While several other teams and companies, including computer technology giant IBM, are in on the race towards quantum computing, all the quantum computers presented thus far can only run one type of operation—which is ironic, seeing as quantum computers can theoretically run more operations than there are atoms in the universe.

Science, Technology, and the Future of Warfare

Nice POV read.


We know that emerging innovations within cutting-edge science and technology (S&T) areas carry the potential to revolutionize governmental structures, economies, and life as we know it. Yet, others have argued that such technologies could yield doomsday scenarios and that military applications of such technologies have even greater potential than nuclear weapons to radically change the balance of power. These S&T areas include robotics and autonomous unmanned system; artificial intelligence; biotechnology, including synthetic and systems biology; the cognitive neurosciences; nanotechnology, including stealth meta-materials; additive manufacturing (aka 3D printing); and the intersection of each with information and computing technologies, i.e., cyber-everything. These concepts and the underlying strategic importance were articulated at the multi-national level in NATO’s May 2010 New Strategic Concept paper: “Less predictable is the possibility that research breakthroughs will transform the technological battlefield … The most destructive periods of history tend to be those when the means of aggression have gained the upper hand in the art of waging war.”

As new and unpredicted technologies are emerging at a seemingly unprecedented pace globally, communication of those new discoveries is occurring faster than ever, meaning that the unique ownership of a new technology is no longer a sufficient position, if not impossible. They’re becoming cheaper and more readily available. In today’s world, recognition of the potential applications of a technology and a sense of purpose in exploiting it are far more important than simply having access to it.

While the suggestions like those that nanotechnology will enable a new class of weapons that will alter the geopolitical landscape remain unrealized, a number of unresolved security puzzles underlying emerging technologies have implications for international security, defense policy, deterrence, governance, and arms control regimes.

A Deeper Look into Quantum Mechanics

Winfried Hensinger is the director of the Sussex Centre for Quantum Technologies in England, and he has spent a lifetime devoted to studying the ins and outs of quantum mechanics and just what it can do for us. When Hensinger first started in the field, quantum computing was still very much a theory, but now it is all around us, and various projects are within reach of creating a universal quantum computer. So, now that scientists are taking quantum computing more seriously it won’t be long before the field begins to explode and applications that we never even imagined possible will become available to use.

Controversial AI has been trained to kill humans in a Doom deathmatch

A competition pitting artificial intelligence (AI) against human players in the classic video game Doom has demonstrated just how advanced AI learning techniques have become – but it’s also caused considerable controversy.

While several teams submitted AI agents for the deathmatch, two students in the US have caught most of the flak, after they published a paper online detailing how their AI bot learned to kill human players in deathmatch scenarios.

The computer science students, Devendra Chaplot and Guillaume Lample, from Carnegie Mellon University, used deep learning techniques to train their AI bot – nicknamed Arnold – to navigate the 3D environment of the first-person shooter Doom.

New Quantum-Powered AI Exoskeleton Lets One Person Do the Work of Four

As the saying goes, “If you want something done right, you gotta do it yourself,” and it seems that you’ll soon be able to get a lot more done using artificially intelligent, high-tech exoskeleton Kindred. It’s the product of a startup created by quantum computing company D-Wave’s founder Geordie Rose, and according to the venture capital firm funding Kindred, the device “uses AI-driven robotics so that one human worker can do the work of four.”

Based on a patent application, the wearable system is envisioned as a 1.2-meter tall humanoid that may be covered with synthetic skin. It will include a head-mounted display and an exo-suit of sensors and actuators that carries out everyday tasks.

Essentially, it looks something like Spider-Man’s Doctor Octopus on the outside, but on the inside, Kindred utilizes quantum computation, a way of information processing and storage that is much faster and more powerful than that used by conventional computers. Data “learned” by the suit can be taught to other robots, allowing those robots to then perform the tasks autonomously.

Modern Jedi Physicists Freeze Light In Mid-Air: Bringing Quantum Computers Closer To Reality

“It’s clear that the light is trapped — there are photons circulating around the atoms,” Everett says. “The atoms absorbed some of the trapped light, but a substantial proportion of the photons were frozen inside the atomic cloud.”

Co-researcher Geoff Campbell from ANU explained that while photons commonly pass by each other at the speed of light without any interactions, atoms interact with each other more freely.

“Corralling a crowd of photons in a cloud of ultra-cold atoms creates more opportunities for them to interact,” Campbell says.

Quantum research race lights up the world

The race towards quantum computing is heating up. Faster, brighter, more exacting – these are all terms that could be applied as much to the actual science as to the research effort going on in labs around the globe.

Quantum technologies are poised to provide exponentially stronger computational power and secured communications. But the bar is high – advances are hard won and competition is intense.

At the forefront of the candidates to implement such technologies is the field of quantum photonics, particularly light sources that emit photons one at a time to be used as carriers of information.

/* */