Blog

Archive for the ‘computing’ category: Page 805

Feb 4, 2016

Do Computer Scientists Hold the Key to Treating Cancer?

Posted by in categories: biotech/medical, computing

2016-01-29-1454078214-8291223-Patterson_cancer.jpg
By David Patterson Professor of Computer Science University of California, Berkeley This ancient assassin, first identified by a pharaoh’s physician, has been killing people for more than 4,600 years. As scientists found therapies for other lethal diseases–such as measles, influenza, and heart disease–cancer moved up this deadly list and will soon be #1; 40% of Americans will face cancer during their lifetimes, with half dying from it. Most of us ignore cancer until someone close is diagnosed, but instead society could zero in on this killer by recording massive data to discover better treatments before a loved one is in its crosshairs.

Cancer is unlimited cell growth caused by problems in DNA. Some people are born with precarious DNA, and others acquire it later. When a cell divides, sometimes it miscopies a small amount of its DNA, and these errors can overwhelm a cell’s defenses to cause cancer. Thus, you can get it without exposure to carcinogens. Cigarettes, radiation, asbestos, and so on simply increase the copy error rate. Speaking figuratively, every time a cell reproduces, we roll the dice on cancer, with such mutagens loading the dice to raise cancer’s chances.

Most cancer studies today use partial genomic information and have fewer than 1,000 patients. One wonders whether their conclusions would still hold if they used complete genomes and increased the number of patients by factors of 10–100.

Read more

Feb 3, 2016

NSA Says it “Must Act Now” Against the Quantum Computing Threat

Posted by in categories: computing, encryption, privacy, quantum physics, security

NSA states it must act now against the “Quantum Computing Threat” due to hackers can possess the technology. I wrote about this on Jan 10th. Glad someone finally is taking action.


The National Security Agency is worried that quantum computers will neutralize our best encryption – but doesn’t yet know what to do about that problem.

Read more

Feb 2, 2016

Skyrmions could be the path to faster, denser hard drives

Posted by in categories: computing, particle physics

Research on skyrmions suggests that the vortex-shaped particles could potentially be used in denser, faster storage.

Read more

Feb 2, 2016

Mind-Reading Computer Instantly Decodes People’s Thoughts

Posted by in categories: computing, neuroscience

A new computer program can almost instantaneously decode people’s thoughts based on spikes in their brain activity, a new study suggests.

Read more

Feb 2, 2016

2,000 year old ‘computer’ discovered: How tech and shipwrecks are rewriting human history

Posted by in categories: 3D printing, biotech/medical, computing

Researchers are only steps away from bioprinting tissues and organs to solve a myriad of injuries and illnesses. TechRepublic has the inside story of the new product accelerating the process.

If you want to understand how close the medical community is to a quantum leap forward in 3D bioprinting, then you need to look at the work that one intern is doing this summer at the University of Louisville.

Read more

Feb 2, 2016

Smartphones Could Generate Own Power with New Coating

Posted by in categories: computing, materials, mobile phones

A transparent material that can be attached to a smartphone’s touch screen could help the device generate electricity whenever anyone taps it, researchers in China say.

Touch screens are now found on most cell phones and tablet computers. Using a touch screen typically involves finger taps, and scientists at Lanzhou University in China reasoned that the mechanical energy from these motions could be converted into electricity to charge the phone’s batteries, which could significantly extend the working time of these portable devices.

The researchers developed a new material based on a transparent silicone rubber known as PDMS. Scientists embedded wires in this rubber that were made of lead zirconate titanate that were only 700 nanometers, or billionths of a meter, wide. For perspective, this is about 140 times thinner than the average width of a human hair. [Top 10 Inventions That Changed the World].

Read more

Feb 2, 2016

Why Ray Kurzweil’s Predictions Are Right 86% of the Time

Posted by in categories: computing, internet, law, Ray Kurzweil, singularity

It’s that time of the year again when techno pundits are once again breathlessly telling us all about the technology and innovation trends that will be big in 2013. That’s great, but many of those predictions will be hopelessly wrong by the end of March. That’s why it’s so fascinating that Ray Kurzweil, one of the leading thinkers when it comes to the future of technology, has had such a strong track record in making predictions about technology for nearly two decades. In fact, of the 147 predictions that Kurzweil has made since the 1990’s, fully 115 of them have turned out to be correct, and another 12 have turned out to be “essentially correct” (off by a year or two), giving his predictions a stunning 86% accuracy rate. So how does he do it?

The fact is, Ray has a system and this system is called the Law of Accelerating Returns. In his new book How to Create a Mind: The Secret of Human Thought Revealed, Kurzweil points out that “every fundamental measure of information technology follows predictable and exponential trajectories.” The most famous of these trajectories, of course, has been the price/performance path of computing power over more than 100 years. Thanks to paradigms such as Moore’s Law, which reduces computing power to a problem of how many transistors you can cram on a chip, anyone can intuitively understand why computers are getting exponentially faster and cheaper over time.

The other famous exponential growth curve in our lifetime is the sheer amount of digital information available on the Internet. Kurzweil typically graphs this as “bits per second transmitted on the Internet.” That means the amount of information on the Internet is doubling approximately every 1.25 years. That’s why “Big Data” is such a buzzword these days — there’s a growing recognition that we’re losing track of all the information we’re putting up on the Internet, from Facebook status updates, to YouTube videos, to funny meme posts on Tumblr. In just a decade, we will have created more content than existed for thousands of years in humanity’s prior experience.

Read more

Feb 2, 2016

New Breakthrough Means Huge Leap Forward for Quantum Computing

Posted by in categories: computing, quantum physics

Researchers have discovered a new method of heat conduction that is a ten-thousand-fold improvement over earlier attempts. The novel invention forms a necessary step in the creation of super-cooled quantum computing.

A group of Finnish scientists at Aalto University have made a stunning breakthrough in heat transference, and the implications are potentially revolutionary.

Continue reading “New Breakthrough Means Huge Leap Forward for Quantum Computing” »

Feb 2, 2016

Can Photon Probabilities Change the World?

Posted by in categories: computing, materials, particle physics, quantum physics, transportation

Did you know that Quantum Theory does not know how probabilities are implemented in Nature? And for that matter neither does any other physical theory. Why? Or why not? The closest Quantum Theory comes to explaining probabilities, is to guess that a particle’s wave function is related to its probabilities. That’s it!

Why do we need to ask this question? Commercial opportunities. Imagine if you could control where a photon localizes (captured by an atom). Particle detectors become significantly more sensitive. Boring? No, in fact, DARPA aims to precisely spot single photons and explore the Fundamental Limits of Photon Detection. Anti-stealth is one application. Imagine if you didn’t need 1,000,000 radio wave photons to determine an aircraft’s radar signature, but only a 1,000?

Using probabilities to control photon switching “circuits”, probability switches. Imagine an empty box with optical cables entering and exiting. These probability switches cause photons to exit through different optical cables by controlling where they localize within the box. What if we could build computers with materials lighter than a feather to switch photon paths, instead of heavy silicon or gallium arsenide to switch electron paths? Imagine how fast these switches could operate, as no matter is involved.

Read more

Feb 2, 2016

Robot-human eye contact helps conversation flow

Posted by in categories: computing, media & arts, robotics/AI

https://youtube.com/watch?v=c0HLuvmWL7g

Pop music is littered with titles that relay how romantic yearning is sparked and experienced wordlessly with one person staring at the other. Animals don’t have it so good. “Most mammals generally interpret direct gaze as threatening or as a sign of dominance,” wrote researchers in Frontiers In Human Neuroscience.

People, however, usually take gazing with positive interpretations, such as affection, love and attraction. “A preference for direct gaze seems to be present at a very early age: Farroni et al. (2002) found that infants as young as 2 days old prefer to look at faces that gazed directly at them compared to faces with averted gaze.”

Continue reading “Robot-human eye contact helps conversation flow” »