Blog

Archive for the ‘climatology’ category: Page 97

May 4, 2021

U.S. approves massive solar project in California desert

Posted by in categories: climatology, employment, habitats, solar power, sustainability

The Biden administration on Monday said it has approved a major solar energy project in the California desert that will be capable of powering nearly 90000 homes.

The $550 million Crimson Solar Project will be sited on 2000 acres of federal land west of Blythe, California, the Interior Department said in a statement. It is being developed by Canadian Solar (CSIQ.O) unit Recurrent Energy and will deliver power to California utility Southern California Edison.

The announcement comes as President Joe Biden has vowed to expand development of renewable energy projects on public lands as part of a broader agenda to fight climate change, create jobs and reverse former President Donald Trump’s emphasis on maximizing fossil fuel extraction.

May 1, 2021

Scientists Discover Three Liquid Phases in Aerosol Particles

Posted by in categories: climatology, particle physics

Findings could help explain how air pollutants interact with the atmosphere.

Researchers at the University of British Columbia, University of California Irvine, and McGill University have discovered three liquid phases in aerosol particles, changing our understanding of air pollutants in the Earth’s atmosphere.

While aerosol particles were known to contain up to two liquid phases, the discovery of an additional liquid phase may be important to providing more accurate atmospheric models and climate predictions. The study was published recently in PNAS.

Apr 27, 2021

High-Altitude Clouds Likely Enabled Early Lakes And Rivers On Mars

Posted by in categories: climatology, space

New Mars climate simulations point to ancient warming facilitated by high, cirrus-like clouds of water ice.

Apr 22, 2021

Europe is building a ‘digital twin’ of Earth to revolutionize climate forecasts

Posted by in categories: climatology, supercomputing, sustainability

The European Union is finalizing plans for an ambitious “digital twin” of planet Earth that would simulate the atmosphere, ocean, ice, and land with unrivaled precision, providing forecasts of floods, droughts, and fires from days to years in advance. Destination Earth, as the effort is called, won’t stop there: It will also attempt to capture human behavior, enabling leaders to see the impacts of weather events and climate change on society and gauge the effects of different climate policies.

“It’s a really bold mission, I like it a lot,” says Ruby Leung, a climate scientist at the U.S. Department of Energy’s (DOE’s) Pacific Northwest National Laboratory. By rendering the planet’s atmosphere in boxes only 1 kilometer across, a scale many times finer than existing climate models, Destination Earth can base its forecasts on far more detailed real-time data than ever before. The project, which will be described in detail in two workshops later this month, will start next year and run on one of the three supercomputers that Europe will deploy in Finland, Italy, and Spain.

Destination Earth rose out of the ashes of Extreme Earth, a proposal led by the European Centre for Medium-Range Weather Forecasts (ECMWF) for a billion-euro flagship research program. The European Union ultimately canceled the flagship program, but retained interest in the idea. Fears that Europe was falling behind China, Japan, and the United States in supercomputing led to the European High-Performance Computing Joint Undertaking, an €8 billion investment to lay the groundwork for eventual “exascale” machines capable of 1 billion billion calculations per second. The dormant Extreme Earth proposal offered a perfect use for such capacity. “This blows a soul into your digital infrastructure,” says Peter Bauer, ECMWF’s deputy director of research, who coordinated Extreme Earth and has been advising the European Union on the new program.

Apr 22, 2021

The Fuss Over Phosphorus

Posted by in categories: biological, chemistry, climatology, particle physics, space

Phosphorus, the element critical for life´s origin and life on Earth, may be even Venus.


Scientists studying the origin of life in the universe often focus on a few critical elements, particularly carbon, hydrogen, and oxygen. But two new papers highlight the importance of phosphorus for biology: an assessment of where things stand with a recent claim about possible life in the clouds of Venus, and a look at how reduced phosphorus compounds produced by lightning might have been critical for life early in our own planet’s history.

First a little biochemistry: Phosphine is a reduced phosphorus compound with one phosphorus atom and three hydrogen atoms. Phosphorus is also found in its reduced form in the phosphide mineral schreibersite, in which the phosphorus atom binds to three metal atoms (either iron or nickel). In its reduced form, phosphorus is much more reactive and useful for life than is phosphate, where the phosphorus atom binds to four oxygen atoms. Phosphorus is also the element that is most enriched in biological molecules as compared to non-biological molecules, so it’s not a bad place to start when you’re hunting for life.

Continue reading “The Fuss Over Phosphorus” »

Apr 22, 2021

Energy Unleashed

Posted by in category: climatology

Volcanic eruptions deep in our oceans are capable of extremely powerful releases of energy, at a rate high enough to power the whole of the United States, according to research published today.

Eruptions from deep-sea volcanoes were long-thought to be relatively uninteresting compared with those on land. While terrestrial volcanoes often produce spectacular eruptions, dispersing volcanic ash into the environment, it was thought that deep marine eruptions only produced slow moving lava flows.

But data gathered by remotely operated vehicles deep in the North East Pacific and analyzed by scientists at the University of Leeds, has revealed a link between the way ash is dispersed during submarine eruptions and the creation of large and powerful columns of heated water rising from the ocean floor, known as megaplumes.

Apr 20, 2021

Building real Iron Man suit (Part#2: Exosuit, hydrogen muscles & EMG sensors)

Posted by in categories: climatology, cyborgs

Here is my inspiration source: https://curiositystream.com/AlexLab.
Use promo code AlexLab to get annual access just for 15$
Please, comment on what else Curiosity Stream episodes you liked.

Cosmos Elementary https://youtube.com/channel/UCBTUsDJaEqU-1rWBW1F0oog.

Continue reading “Building real Iron Man suit (Part#2: Exosuit, hydrogen muscles & EMG sensors)” »

Apr 16, 2021

Transparent nanolayers pave the way for production of silicon solar cells with more than 26% efficiency

Posted by in categories: climatology, nanotechnology, solar power, sustainability

There is no cheaper way to generate electricity today than with the sun. Power plants are currently under construction in sunny locations that will supply solar electricity for less than 2 cents per kilowatt hour. Solar cells available on the market based on crystalline silicon make this possible with efficiencies of up to 23 percent. Therefore they hold a global market share of around 95 percent. With even higher efficiencies of more than 26 percent, costs could fall further. An international working group led by photovoltaics researchers from Forschungszentrum Jülich now plan to reach this goal with a nanostructured, transparent material for the front of solar cells and a sophisticated design. The scientists report on their success of many years of research in the renowned scientific journal Nature Energy.

Silicon have been steadily improved over the past decades and have already reached a very high level of development. However, the disturbing effect of recombination still occurs after the absorption of sunlight and the photovoltaic generation of electrical charge carriers. In this process, negative and positive charge carriers that have already been generated combine and cancel each other out before they could be used for the flow of . This effect can be countered by special materials that have a special property—passivation.

“Our nanostructured layers offer precisely this desired passivation,” says Malte Köhler, former Ph.D. student and first author from the Jülich Institute for Energy and Climate Research (IEK-5), who has since received his doctorate. In addition, the ultra-thin layers are transparent—so the incidence of light is hardly reduced—and exhibit high electrical conductivity.

Apr 14, 2021

Physix World – What is Physix?

Posted by in categories: climatology, government

In a Universal-nutshell, Physix assists the World (People, Government, Corporations, Non-Profits, Climate, Nature, Technology) in Making it Better!


Quality Vote or Q-vote.

Is an anonymous feedback voting and posting metric, via the scale as shown. It will display wave length patterns in how people feel on various topics after a user has voted on it. Eventually the team plans to allow commenting, that will also enable you to take a color rating feedback (timestamps) based on your comment, and others as well. This will give weighted value to these timestamped ratings comments when in competition with many on one post. It is currently in working alpha prototype testing mode now.

Apr 10, 2021

Satellite technology puts into orbit swarms of spacecraft no bigger than a loaf of bread

Posted by in categories: climatology, mobile phones, robotics/AI, satellites, sustainability

As they researched why the avalanche occurred with such force, researchers studying climate change pored over images taken in the days and weeks before and saw that ominous cracks had begun to form in the ice and snow. Then, scanning photos of a nearby glacier, they noticed similar crevasses forming, touching off a scramble to warn local authorities that it was also about to come crashing down.

The images of the glaciers came from a constellation of satellites no bigger than a shoebox, in orbit 280 miles up. Operated by San Francisco-based company Planet, the satellites, called Doves, weigh just over 10 pounds each and fly in “flocks” that today include 175 satellites. If one fails, the company replaces it, and as better batteries, solar arrays and cameras become available, the company updates its satellites the way Apple unveils a new iPhone.

The revolution in technology that transformed personal computing, put smart speakers in homes and gave rise to the age of artificial intelligence and machine learning is also transforming space. While rockets and human exploration get most of the attention, a quiet and often overlooked transformation has taken place in the way satellites are manufactured and operated. The result is an explosion of data and imagery from orbit.

Page 97 of 154First949596979899100101Last