Blog

Archive for the ‘climatology’ category: Page 14

May 25, 2024

Dr. Diane DiEuliis — NDU — Preparing National Security Leaders For The Next Generation Of Threats

Posted by in categories: bioengineering, biological, biotech/medical, climatology, education, health, neuroscience, policy

Episode Disclaimer — The views presented in this episode are those of the speaker and do not necessarily represent the views of the United States Department of Defense (DoD) or its components.

Dr. Diane DiEuliis, Ph.D. is a Distinguished Research Fellow at National Defense University (NDU — https://www.ndu.edu/), an institution of higher education, funded by the United States Department of Defense, aimed at facilitating high-level education, training, and professional development of national security leaders. Her research areas focus on emerging biological technologies, biodefense, and preparedness for biothreats. Specific topic areas under this broad research portfolio include dual-use life sciences research, synthetic biology, the U.S. bioeconomy, disaster recovery, and behavioral, cognitive, and social science as it relates to important aspects of deterrence. Dr. DiEuliis currently has several research grants in progress, and teaches in foundational professional military education.

Continue reading “Dr. Diane DiEuliis — NDU — Preparing National Security Leaders For The Next Generation Of Threats” »

May 25, 2024

Transparent metamaterial for energy-efficient regulation in building can clean itself like a lotus leaf

Posted by in categories: climatology, materials

Researchers at the Karlsruhe Institute of Technology (KIT) introduce a polymer-based material with unique properties in the journal Nature Communications. This material allows sunlight to enter, maintains a more comfortable indoor climate without additional energy, and cleans itself like a lotus leaf. The new development could replace glass components in walls and roofs in the future. The research team has successfully tested the material in outdoor tests on the KIT campus.

May 20, 2024

Dr Roland Roesch — Director, Innovation and Technology Centre, International Renewable Energy Agency

Posted by in categories: business, climatology, economics, engineering, finance, policy, sustainability

Innovation For A Sustainable Global Energy Transformation — Dr. Roland Roesch, Ph.D. — Director, Innovation and Technology Centre, International Renewable Energy Agency (IRENA)


Dr. Roland Roesch, Ph.D. is Director, Innovation and Technology Centre (IITC), of the International Renewable Energy Agency (IRENA — https://www.irena.org/) where he oversees the Agency’s work on advising member countries in the area of technology status and roadmaps, energy planning, cost and markets and innovation policy frameworks.

Continue reading “Dr Roland Roesch — Director, Innovation and Technology Centre, International Renewable Energy Agency” »

May 16, 2024

2035 Vision: Ten Predictions for the Future

Posted by in categories: climatology, robotics/AI

Ten predictions for 2035 to reshape society, from AI and AGI to breakthroughs in brain-computer interfaces, living movies, and climate tech.

May 15, 2024

Indonesia on high alert: Major volcanic eruption threatens thousands

Posted by in category: climatology

A powerful volcanic eruption occurred on one of the Indonesian islands, sending a column of smoke and ash up to 3 miles high. Tens of thousands of people are at risk of evacuation, though no orders have been given yet. Indonesia is one of the world’s most dangerous areas for volcanic activity. Eruptions are common, but the last one was notably larg…

May 10, 2024

The Impact of Soil Saturation on Woodland Creation: Insights from UK Uplands

Posted by in categories: climatology, sustainability

“There has been extensive talk about how larger trees respond to the effects of climate change,” said Dr. Thomas Murphy. “But these results show we need to factor in the response of young trees as well, especially if they are being envisioned as an integral part of the solution.”


Can climate change be fought using saturated soils, and what impacts would these soils have on newly planted trees? This is what a recent study published in Forest Ecology and Management hopes to address as a team of researchers from the University of Plymouth investigated how various soil saturation levels could influence the survival rates of newly planted trees meant to combat climate change. This study holds the potential to help scientists, conservationists, and legislators better understand the steps that can be taken to combat climate change without causing further harm to the environment.

The study involved planting acorns in four different soils: totally flooded, high saturation, medium saturation, and low saturation, with the water levels being just over eight-and-a-half inches (220 millimeters) beneath the acorns. In the end, the researchers discovered a zero-survivability rate for the totally flooded acorns while finding increased survivability rates for high saturation, medium saturation, and low saturation at 43 percent, 77 percent, and 83 percent, respectively. For the higher saturated acorns, the researchers also found decreased levels of leaf photosynthesis, root: shoot ratio, and decreased chances of late season shoot growth, as well.

Continue reading “The Impact of Soil Saturation on Woodland Creation: Insights from UK Uplands” »

May 10, 2024

Historical Perspective: The Dynamic Birth of the Modern Great Barrier Reef

Posted by in categories: climatology, computing, sustainability

“This study has given us an historical picture of how the emerging modern reef responded to huge environmental stress,” said Dr. Jody Webster.


What events caused the Great Barrier Reef to become what it is today, specifically over the course of the last six to eight thousand years, or just after the last Ice Age? This is what a recent study published in Quaternary Science Reviews hopes to address as a team of international researchers conducted an in-depth scientific analysis on various aspects of the Great Barrier Reef to ascertain the environmental factors that contributed to the Reef’s present conditions. This study holds the potential to help scientists better understand how reefs evolve over time and the environment’s role in their evolution.

For the study, the researchers drilled almost two dozen coral samples and analyzed them using a variety of methods, including computer tomography, scanning electron microscopy, and X-ray diffraction to ascertain yearly growth patterns within the coral samples. In the end, they determined that environmental factors, including increased water temperatures, ocean turbulence, and rising sea levels, led to increased nutrients, which contributed to the growth of the Great Barrier Reef, and is consistent with previous studies.

Continue reading “Historical Perspective: The Dynamic Birth of the Modern Great Barrier Reef” »

May 8, 2024

Ozone Dynamics on Proxima Centauri b: A Key to Habitability

Posted by in categories: chemistry, climatology, computing, space

How can studying an exoplanet’s ozone help astronomers better understand its habitability potential? This is what a recent study published in the Monthly Notices of the Royal Astronomical Society hopes to address as a team of international researchers investigated how an ozone on the nearest exoplanet to Earth, Proxima Centauri b, could influence its own climate over time. This study holds the potential to help astronomers better understand how an exoplanet’s ozone could influence its formation, evolution, and potential habitability, and could have implications on how astronomers study Earth-like exoplanets throughout the cosmos.

“Imagine a world where ozone affects temperature and wind speed and holds the key to a planet’s very habitability,” said Dr. Assaf Hochman, who is a senior lecturer in the Institute of Earth Sciences at the Hebrew University of Jerusalem and a co-author on the study. “Our study unveils this intricate connection and underscores the importance of considering interactive ozone and other photochemical species in our quest to understand Earth-like exoplanets.”

For the study, the researchers used a series of computer simulations to ascertain how an active ozone on Proxima Centauri b could influence the exoplanet’s climate and potential habitability. In the end, the researchers discovered that an ozone layer on Proxima Centauri b could greatly influence the temperature and wind circulation patterns throughout its atmosphere. Additionally, they also found altitude also played a high role in the atmospheric temperature and temperature variances, as well. The researchers emphasized how these findings could help future researchers better understand the potential habitability of an exoplanet, noting how a potential ozone layer on Proxima Centauri b could greatly influence its climate.

May 8, 2024

Tornadoes Are Coming in Bunches. Scientists Are Trying to Figure Out Why

Posted by in category: climatology

The number of tornadoes so far in the United States this year is just above average. But their distribution is changing.

May 8, 2024

An Ancient Maya Practice Could Be the Key to Growing Vegetables on Mars

Posted by in categories: climatology, space

If humans build settlements on Mars, how will they feed ourselves? Waiting on deliveries from Earth would take too long and costs would be exorbitant, since getting to the Red Planet is currently a nine-month one-way journey. On top of that, dehydrating foodstuff—the best preservation method for perishables sent to space—removes vital nutrients.

More than likely, Martian settlers will need to grow their own food.

Researchers are now exploring how best to optimize crop yield on Mars using intercropping, a technique perfected by Maya farmers centuries ago that involves growing multiple plants in close proximity to one another. Their findings—published this month in the journal Plos One—could not only benefit the pioneers who end up colonizing the Red Planet, but also farmers here on Earth amid a rapidly changing climate.

Page 14 of 153First1112131415161718Last