Blog

Archive for the ‘chemistry’ category: Page 322

Feb 23, 2016

Proven one-step process to convert CO2 and water directly into liquid hydrocarbon fuel

Posted by in categories: chemistry, sustainability, transportation

Our next step is to develop a photo-catalyst better matched to the solar spectrum,” MacDonnell said. “Then we could more effectively use the entire spectrum of incident light to work towards the overall goal of a sustainable solar liquid fuel.


A team of University of Texas at Arlington chemists and engineers have proven that concentrated light, heat and high pressures can drive the one-step conversion of carbon dioxide and water directly into useable liquid hydrocarbon fuels.

This simple and inexpensive new sustainable fuels technology could potentially help limit global warming by removing from the atmosphere to make fuel. The process also reverts oxygen back into the system as a byproduct of the reaction, with a clear positive environmental impact, researchers said.

Continue reading “Proven one-step process to convert CO2 and water directly into liquid hydrocarbon fuel” »

Feb 22, 2016

Quantum processes control accurately to several attoseconds

Posted by in categories: chemistry, quantum physics

Russia is getting closer in perfecting Quantum Processors.


A team of physicists including Russian researchers succeeded in conducting an experiment in which, for the first time in history, control over ultrafast motion of electrons down to three attoseconds (one attosecond refers to a second as one second refers to the lifetime of the Universe) was proved possible (“Coherent control with a short-wavelength free-electron laser”). This fact paves a way to new directions of research that seemed improbable before. The experiment was conducted with the help of the free-electron laser FERMI located at the “Elettra Sincrotrone” research center in Trieste, Italy.

The speed of chemical, physical and biological processes is extremely high, atomic bonds are broken and restored within femtoseconds (one millionth of one billionth of a second). The Egyptian-American chemist Ahmed Zewail was the first to succeed in observing the dynamics of chemical processes, which made him a winner of the 1999 Nobel Prize in Chemistry.

Continue reading “Quantum processes control accurately to several attoseconds” »

Feb 7, 2016

The Tiny Startup Racing Google to Build a Quantum Computing Chip

Posted by in categories: chemistry, computing, quantum physics, robotics/AI

As I said this morning; there is something definitely going with Quantum today. Maybe it’s the planet alignment (I saw there was something going on with the alignment with Aquaris today) — this is awesome news.


Rigetti Computing is working on designs for quantum-powered chips to perform previously impossible feats that advance chemistry and machine learning.

Read more

Feb 4, 2016

How to efficiently convert carbon dioxide from air to methanol fuel

Posted by in categories: chemistry, energy

Convert carbon dioxide from air (at low temp) to methanol fuel — why not!


The carbon dioxide-to-methanol process (credit: Surya Prakash)

Researchers at the University of Southern California (USC) Loker Hydrocarbon Research Institute have created fuel out of thin air — directly converting carbon dioxide from air into methanol at relatively low temperatures for the first time. While methanol can’t currently compete with oil, it will be there when we run out of oil, the researchers note.

Continue reading “How to efficiently convert carbon dioxide from air to methanol fuel” »

Jan 28, 2016

How to Build a Starship — and Why We Should Start Thinking About It Now

Posted by in categories: alien life, chemistry, engineering, nanotechnology, space travel

With a growing number of Earth-like exoplanets discovered in recent years, it is becoming increasingly frustrating that we can’t visit them. After all, our knowledge of the planets in our own solar system would be pretty limited if it weren’t for the space probes we’d sent to explore them.

The problem is that even the nearest stars are a very long way away, and enormous engineering efforts will be required to reach them on timescales that are relevant to us. But with research in areas such as nuclear fusion and nanotechnology advancing rapidly, we may not be as far away from constructing small, fast interstellar space probes as we think.

There’s a lot at stake. If we ever found evidence suggesting that life might exist on a planet orbiting a nearby star, we would most likely need to go there to get definitive proof and learn more about its underlying biochemistry and evolutionary history. This would require transporting sophisticated scientific instruments across interstellar space.

Read more

Jan 13, 2016

Does our Microbiome Control Us or Do We Control It?

Posted by in categories: biotech/medical, chemistry, food, genetics, health, neuroscience

This is an interesting conjecture.


We may be able to keep our gut in check after all. That’s the tantalizing finding from a new study published today that reveals a way that mice—and potentially humans—can control the makeup and behavior of their gut microbiome. Such a prospect upends the popular notion that the complex ecosystem of germs residing in our guts essentially acts as our puppet master, altering brain biochemistry even as it tends to our immune system, wards off infection and helps us break down our supersized burger and fries.

In a series of elaborate experiments researchers from Harvard Medical School and Brigham and Women’s Hospital discovered that mouse poop is chock full of tiny, noncoding RNAs called microRNAs from their gastrointestinal (GI) tracts and that these biomolecules appear to shape and regulate the microbiome. “We’ve known about how microbes can influence your health for a few years now and in a way we’ve always suspected it’s a two-way process, but never really pinned it down that well,” says Tim Spector, a professor of genetic epidemiology at King’s College London, not involved with the new study. “This [new work] explains quite nicely the two-way interaction between microbes and us, and it shows the relationship going the other way—which is fascinating,” says Spector, author of The Diet Myth: Why the Secret to Health and Weight Loss Is Already in Your Gut.

Continue reading “Does our Microbiome Control Us or Do We Control It?” »

Dec 25, 2015

Rimac — Electric Concept One Super Car 1088hp

Posted by in categories: chemistry, energy, transportation

Specifications:

Performance Power output: 1088 hp Torque: 1600 Nm from 0 to 6500 rpm Acceleration: 0–100 km/h (0−62 mph) 2,8 seconds Range: up to 600 km (realistic range — 500 km) Braking distance: 31.5m (100−0 km/h) Lateral g-force: 1.4 g Efficiency: 140–550 Wh/km 40 kW on-board charging 100 kW fast DC-charging Weight-to-power ratio: 1.79 kg/hp Weight distribution: 42% front, 58% rear

Continue reading “Rimac — Electric Concept One Super Car 1088hp” »

Dec 9, 2015

Scores of Labs Should be Gearing Up to Work on Glucosepane Cross-Link Breakers, But Are They?

Posted by in categories: biotech/medical, chemistry, health, life extension, neuroscience

Glucosepane is one of the most significant mechanisms of aging and yet very few people are working on it!


As we age skin and blood vessels lose their elasticity. People care too much about the skin and too little about the blood vessels, but that is always the way of it. Appearance first and substance later, if at all. Yet you can live inside an aged skin; beyond the raised risk of skin cancer its damaged state arguably only makes life less pleasant, and the present state of medical science can ensure that the numerous age-related dermatological dysfunctions can be kept to a state of minor inconvenience. Loss of blood vessel elasticity, on the other hand, will steadily destroy your health and then kill you. Arterial stiffening causes remodeling of the cardiovascular system and hypertension. The biological systems that regulate blood pressure become dysfunctional as blood vessels depart from ideal youthful behavior, creating a downward spiral of increasing blood pressure and reactions to that increase. Small blood vessels fail under the strain in ever larger numbers, damaging surrounding tissue. In the brain this damage contributes to age-related cognitive decline by creating countless tiny, unnoticed strokes. Ultimately this process leads to dementia. More important parts of the cardiovascular system are likely to fail first, however, perhaps causing a stroke, or a heart attack, or the slower decline of congestive heart failure.

From what is known today, it is reasonable to propose that the two main culprits driving loss of tissue elasticity are sugary cross-links generated as a byproduct of the normal operation of cellular metabolism and growing numbers of senescent cells. Elasticity is a property of the extracellular matrix, an intricate structure of collagens and other proteins created by cells. Different arrangements of these molecules produce very different structures, ranging from load-bearing tissues such as bone and cartilage to elastic tissues such as skin and blood vessel walls. Disrupting the arrangement and interaction of molecules in the extracellular matrix also disrupts its properties. Persistent cross-links achieve this by linking proteins together and restricting their normal range of motion. Senescent cells, on the other hand, secrete a range of proteins capable of breaking down or remodeling portions of the surrounding extracellular matrix, and altering the behavior of nearby cells for the worse.

Continue reading “Scores of Labs Should be Gearing Up to Work on Glucosepane Cross-Link Breakers, But Are They?” »

Nov 25, 2015

Inkjet hologram printing now possible

Posted by in categories: chemistry, materials, security

Vivid holographic images and text can now be produced by means of an ordinary inkjet printer. This new method, developed by a team of scientists from ITMO University in Saint Petersburg, is expected to significantly reduce the cost and time needed to create the so-called rainbow holograms, commonly used for security purposes — to protect valuable items, such as credit cards and paper currency, from piracy and falsification. The results of the study were published 17 November in the scientific journal Advanced Functional Materials.

The team, led by Alexander Vinogradov, senior research associate at the International Laboratory of Solution Chemistry of Advanced Materials and Technologies (SCAMT) in ITMO University, developed colorless ink made of nanocrystalline titania, which can be loaded into an inkjet printer and then deposited on special microembossed paper, resulting in unique patterned images. The ink makes it possible to print custom holographic images on transparent film in a matter of minutes, instead of days as with the use of conventional methods.

Rainbow holograms are widely used to fight against the forgery of credit cards, money, documents and certain manufactured products that call for a high level of protection. Even though the technology of obtaining holographic images was already developed in the 1960s, there still exist numerous technical difficulties that impede its further spread and integration into polygraphic industry.

Read more

Nov 25, 2015

Ray Kurzweil — The Future of Medicine

Posted by in categories: biotech/medical, chemistry, computing, health, life extension, nanotechnology, Ray Kurzweil, robotics/AI, singularity, transhumanism

https://www.youtube.com/watch?v=Q9Ec7AvnufQ

Ray Kurzweil: https://en.wikipedia.org/wiki/Ray_Kurzweil#Health_and_aging

Raymond “Ray” Kurzweil is an American author, computer scientist, inventor and futurist. Aside from futurology, he is involved in fields such as optical character recognition (OCR), text-to-speech synthesis, speech recognition technology, and electronic keyboard instruments. He has written books on health, artificial intelligence (AI), transhumanism, the technological singularity, and futurism. Kurzweil is a public advocate for the futurist and transhumanist movements, and gives public talks to share his optimistic outlook on life extension technologies and the future of nanotechnology, robotics, and biotechnology.

Continue reading “Ray Kurzweil — The Future of Medicine” »