Toggle light / dark theme

U of I lab to receive $15M for AI tool development, molecular innovation

CHAMPAIGN-URBANA, Ill. (WCIA) — The U.S. National Science Foundation has awarded a University of Illinois lab $15 million. The money will support the development of AI tools, to help scientists quickly and efficiently synthesize molecules for medicine, energy, industry and more.

The money will be going to the Molecule Maker Lab Institute (MMLI) — which is based on the U of I’s campus, in partnership between Pennsylvania State University and the Georgia Institute of Technology. U of I chemical and biomolecular engineering professor Huimin Zhao directs the lab.

Zhao said functional molecules like drugs chemicals are important in today’s society, but the process of discovering new molecules is slow and expensive. He believes AI can change that.

High-quality crystals enable new insights into structure–property relationships and multifunctionality

Researchers at Kumamoto University and Nagoya University have developed a new class of two-dimensional (2D) metal-organic frameworks (MOFs) using triptycene-based molecules, marking a breakthrough in the quest to understand and enhance the physical properties of these promising materials. The work is published in the Journal of the American Chemical Society.

Fiber-Fed 3D Printing of Germanate Glass Optics

In recent years, 3D printing glass optics has gained massive attention in industry and academia since glass could be an ideal material to make optical elements, including the lens. However, the limitation of materials and printing methods has prevented 3D printing glass optics progress. Therefore, we have developed a novel printing strategy for germanate glass printing instead of pure silica. Moreover, compared with traditional multi-component quartz glass, germanate glass has unmatched advantages for its mid-infrared (MIR) transparency and outstanding visible light imaging performance. Furthermore, compared with non-oxide glass (fluoride glass and chalcogenide glass), germanate glass has much better mechanical, physical, and chemical properties and a high refractive index.

What Can a Cell Remember?

In a provocative study published in Nature Communications late last year, the neuroscientist Nikolay Kukushkin and his mentor Thomas J. Carew at New York University showed that human kidney cells growing in a dish can “remember” patterns of chemical signals when they’re presented at regularly spaced intervals — a memory phenomenon common to all animals, but unseen outside the nervous system until now. Kukushkin is part of a small but enthusiastic cohort of researchers studying “aneural,” or brainless, forms of memory. What does a cell know of itself? So far, their research suggests that the answer to McClintock’s question might be: much more than you think.

Brainless Learning

The prevailing wisdom in neuroscience has long been that memory and learning are consequences of “synaptic plasticity” in the brain. The connections between clusters of neurons simultaneously active during an experience strengthen into networks that remain active even after the experience has passed, perpetuating it as a memory. This phenomenon, expressed by the adage “Neurons that fire together, wire together,” has shaped our understanding of memory for the better part of a century. But if solitary nonneural cells can also remember and learn, then networks of neurons can’t be the whole story.

Lipid nanoparticle stereochemistry shapes mRNA delivery safety and efficacy, study reveals

A team from the Max-Planck-Institut für Kohlenforschung, Hokkaido University, and Osaka University has discovered that subtle differences in molecular structure can have a major impact on the performance of mRNA-based drugs. Their findings, published in the Journal of the American Chemical Society, open the door to the development of safer and more effective vaccines and therapies.

To deliver therapeutic nucleic acids like mRNA into cells, scientists rely on (LNPs)—tiny, fat-based carriers that protect fragile genetic material, enabling it to survive in the body and reach target cells. A key component of these LNPs are ionizable lipids, which help mRNA enter cells and then release it effectively. One such lipid, ALC-315, was notably used in the Pfizer/BioNTech COVID-19 vaccine, a medical breakthrough that played a critical role in controlling the global pandemic.

Transportation @ PNNL: Eliminating Critical Materials in Batteries

Pacific Northwest National Laboratory draws on its distinguishing strengths in chemistry, Earth sciences, biology and data science to advance scientific knowledge and address challenges in energy resiliency and national security. Founded in 1965, PNNL is operated by Battelle and supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit the DOE Office of Science website. For more information about PNNL, visit PNNL’s News Center. Follow us on X, Facebook, LinkedIn and Instagram.

Dome-shaped aerogel architecture offers superior toughness and flexibility for spacecraft applications

A new collection of chemically diverse dome-celled ultralight aerogels with high porosity and very low density feature elasticity and mechanical properties that remain intact even under extreme temperatures from 4.2 kelvin (K) to 2273 K.

Scientists create first programmable single-atom catalyst that adapts chemical activity

A research team at the Politecnico di Milano has developed an innovative single-atom catalyst capable of selectively adapting its chemical activity. This is a crucial step forward in sustainable chemistry and the design of more efficient and programmable industrial processes.

The study was published in the Journal of the American Chemical Society.

This achievement is novel in the field of single-atom catalysts. For the first time, scientists have demonstrated the possibility of designing a material that can selectively change its catalytic function depending on the chemical environment. It involves a sort of “molecular switch” that allows complex reactions to be performed more cleanly and efficiently, using less energy than conventional processes.

Light-powered nano-motor winds molecular strands into chain-like structures

Threads or ropes can easily be used for braiding, knotting, and weaving. In chemistry, however, processing molecular strands in this way is an almost impossible task. This is because molecules are not only tiny, they are also constantly in motion and therefore cannot be easily touched, held or precisely shaped.

A research group at the Institute of Chemistry at Humboldt-Universität zu Berlin (HU) led by Dr. Michael Kathan has now succeeded in precisely winding two molecular strands around each other using an artificial, light-driven molecular motor, thereby creating a particularly complex structure: a catenane (from Latin “catena” = chain). Catenanes consist of two ring-shaped molecules that are intertwined like the links of a chain—without being chemically bonded to each other. The research results are published in the journal Science.

“What we have developed is basically a mini-machine that is powered by light and rotates in one direction,” says Kathan.

Controlling polymer shapes: A new generation of shape-adaptive materials

What if a complex material could reshape itself in response to a simple chemical signal? A team of physicists from the University of Vienna and the University of Edinburgh has shown that even small changes in pH value and thus in electric charge can shift the spatial arrangement of closed ring-shaped polymers (molecular chains)—by altering the balance between twist and writhe, two distinct modes of spatial deformation.

Their findings, published in Physical Review Letters, demonstrate how electric charge can be used to reshape polymers in a reversible and controllable way—opening up new possibilities for programmable, responsive materials.

With such materials, permeability and such as elasticity, yield stress and viscosity could be better controlled and precisely “programmed.”

/* */