Blog

Archive for the ‘chemistry’ category: Page 2

Dec 14, 2024

Physicists introduce approach to control wave patterns via fluid flows

Posted by in categories: biological, chemistry, education, physics

The reliable control of traveling waves emerging from the coupling of oscillations and diffusion in physical, chemical and biological systems is a long-standing challenge within the physics community. Effective approaches to control these waves help to improve the present understanding of reaction-diffusion systems and their underlying dynamics.

Researchers at Université libre de Bruxelles (ULB) and Université de Rennes recently demonstrated a promising approach to control chemical waves in a type of known as hyperbolic flow. Their experimental methods, outlined in Physical Review Letters recently, entail the control of chemical waves via the stretching and compression of fluids.

“At a summer school in Corsica, discussions between the Brussels and Rennes team triggered the curiosity to see how chemical waves studied at ULB in Brussels would behave in hyperbolic flows analyzed in Rennes,” Anne De Wit, senior author of the paper, told Phys.org. “The primary objective was to see how a non-trivial flow would influence the dynamics of waves.”

Dec 14, 2024

Breakthrough Study: Natural Compound Could Counter Opioid Addiction Without Sacrificing Pain Relief

Posted by in categories: biotech/medical, chemistry, neuroscience

Boosting the endocannabinoid 2-AG in the brain can counteract opioid addiction while preserving their pain relief, a Weill Cornell Medicine study finds. This approach, tested in mice using the chemical JZL184, may lead to safer treatments for pain management.

The natural enhancement of chemicals produced by the body, known as endocannabinoids, may mitigate the addictive properties of opioids like morphine and oxycodone while preserving their pain-relieving effects, according to researchers from Weill Cornell Medicine in collaboration with The Center for Youth Mental Health at NewYork-Presbyterian. Endocannabinoids interact with cannabinoid receptors found throughout the body, which play a role in regulating functions such as learning and memory, emotions, sleep, immune response, and appetite.

Opioids prescribed to control pain can become addictive because they not only dull pain, but also produce a sense of euphoria. The preclinical study, published recently in the journal Science Advances, may lead to a new type of therapeutic that could be taken with an opioid regimen to only reduce the reward aspect of opioids.

Dec 14, 2024

Quantum Dot Breakthrough Makes Infrared Lasers Affordable and Scalable

Posted by in categories: chemistry, quantum physics

Researchers have developed a new laser technology using large colloidal quantum dots of lead sulfide to emit coherent light in the extended short-wave infrared range.

This innovation promises cheaper, scalable laser solutions compatible with silicon CMOS platforms, covering a broader wavelength range without altering chemical compositions, and eliminating the need for costly femtosecond laser amplifiers.

Novel Laser Technologies

Dec 13, 2024

Fraunhofer ISE concludes perovskite-silicon tandem solar cell project

Posted by in categories: chemistry, solar power, sustainability

The researchers produced new materials with perovskite crystal structures and compared them with existing materials at the cell level, concluding that high efficiencies can only be achieved with lead perovskites. They then fabricated highly efficient demonstrators, such as a perovskite silicon tandem solar cell of more than 100 sq cm with screen-printed metallization.

The project also included the development of a scalable perovskite-silicon tandem solar cell that achieved a 31.6% power conversion efficiency, first announced in September. The Fraunhofer researchers used a combination of vapor deposition and wet-chemical deposition to ensure an even deposition of the perovskite layer on the textured silicon surface. “Close industrial cooperation is the next step in establishing this future technology in Europe,” said Professor Andreas Bett, coordinator of the project.

Dec 12, 2024

Unveiling the structure of a photosynthetic catalyst that turns light into hydrogen fuel

Posted by in categories: chemistry, nanotechnology, particle physics, sustainability

Photosynthesis is one of the most efficient natural processes for converting light energy from the sun into chemical energy vital for life on earth. Proteins called photosystems are critical to this process and are responsible for the conversion of light energy to chemical energy.

Combining one kind of these proteins, called photosystem I (PSI), with platinum nanoparticles, microscopic particles that can perform a chemical reaction that produces hydrogen — a valuable clean energy source — creates a biohybrid catalyst. That is, the light absorbed by PSI drives hydrogen production by the platinum nanoparticle.

In a recent breakthrough, researchers at the U.S. Department of Energy’s (DOE) Argonne National Laboratory and Yale University have determined the structure of the PSI biohybrid solar fuel catalyst. Building on more than 13 years of research pioneered at Argonne, the team reports the first high-resolution view of a biohybrid structure, using an electron microscopy method called cryo-EM. With structural information in hand, this advancement opens the door for researchers to develop biohybrid solar fuel systems with improved performance, which would provide a sustainable alternative to traditional energy sources.

Continue reading “Unveiling the structure of a photosynthetic catalyst that turns light into hydrogen fuel” »

Dec 12, 2024

Catalyst ‘breathes’ new life into acrylonitrile production

Posted by in categories: chemistry, energy

A team of engineers is reimagining one of the essential processes in modern manufacturing. Their goal? To transform how a chemical called acrylonitrile (ACN) is made—not by building world-scale manufacturing sites, but by using smaller-scale, modular reactors that can work if they let the catalyst, in a sense, “breathe.”

Their article, titled “Propene Ammoxidation over an Industrial Bismuth Molybdate-Based Catalyst Using Forced Dynamic Operation,” is published in Applied Catalysis A: General.

ACN is everywhere, from carbon fibers in sports equipment to acrylics in car parts and textiles. Traditionally, producing it requires a continuous, energy-intensive process. But now, researchers at the University of Virginia and the University of Houston have shown that by pausing to “inhale” fresh oxygen, a chemical can produce ACN more efficiently. This discovery could open the door to smaller, versatile production facilities that adapt to fluctuating needs.

Dec 12, 2024

Quantum algorithms can break generative AI bottlenecks

Posted by in categories: chemistry, health, information science, quantum physics, robotics/AI, sustainability

Finding a reasonable hypothesis can pose a challenge when there are thousands of possibilities. This is why Dr. Joseph Sang-II Kwon is trying to make hypotheses in a generalizable and systematic manner.

Kwon, an associate professor in the Artie McFerrin Department of Chemical Engineering at Texas A&M University, published his work on blending traditional physics-based scientific models with to accurately predict hypotheses in the journal Nature Chemical Engineering.

Kwon’s research extends beyond the realm of traditional chemical engineering. By connecting physical laws with machine learning, his work could impact , smart manufacturing, and health care, outlined in his recent paper, “Adding big data into the equation.”

Dec 12, 2024

New methods generate and supercharge magnetism of 2D materials

Posted by in categories: chemistry, particle physics

At just a few atoms of thickness, 2D materials offer revolutionary possibilities for new technologies that are microscopically sized but have the same capabilities as existing machines.

Florida State University researchers have unlocked a new method for producing one class of 2D material and for supercharging its magnetic properties. The work was published in Angewandte Chemie.

Experimenting on a metallic magnet made from the elements iron, germanium and tellurium and known as FGT, the research team made two breakthroughs: a collection method that yielded 1,000 times more material than typical practices, and the ability to alter FGT’s magnetic properties through a chemical treatment.

Dec 12, 2024

Eyes on the sun: Naked thallium-205 ion decay reveals history over millions of years

Posted by in categories: chemistry, climatology, evolution, nuclear energy, particle physics, sustainability

The sun, the essential engine that sustains life on Earth, generates its tremendous energy through the process of nuclear fusion. At the same time, it releases a continuous stream of neutrinos—particles that serve as messengers of its internal dynamics. Although modern neutrino detectors unveil the sun’s present behavior, significant questions linger about its stability over periods of millions of years—a timeframe that spans human evolution and significant climate changes.

Finding answers to this is the goal of the LORandite EXperiment (LOREX) that requires a precise knowledge of the solar neutrino cross section on thallium. This information has now been provided by an international collaboration of scientists using the unique facilities at GSI/FAIR’s Experimental Storage Ring ESR in Darmstadt to obtain an essential measurement that will help to understand the long-term stability of the sun. The results of the measurements have been published in the journal Physical Review Letters.

LOREX is the only long-time geochemical solar neutrino experiment still actively pursued. Proposed in the 1980s, it aims to measure solar neutrino flux averaged over a remarkable four million years, corresponding to the geological age of the lorandite ore.

Dec 12, 2024

A matter of taste: Electronic tongue reveals AI inner thoughts

Posted by in categories: chemistry, food, robotics/AI

UNIVERSITY PARK, Pa. — A recently developed electronic tongue is capable of identifying differences in similar liquids, such as milk with varying water content; diverse products, including soda types and coffee blends; signs of spoilage in fruit juices; and instances of food safety concerns. The team, led by researchers at Penn State, also found that results were even more accurate when artificial intelligence (AI) used its own assessment parameters to interpret the data generated by the electronic tongue.

(Many people already posted this. This is the press release from Penn Sate who did the research)


The tongue comprises a graphene-based ion-sensitive field-effect transistor, or a conductive device that can detect chemical ions, linked to an artificial neural network, trained on various datasets. Critically, Das noted, the sensors are non-functionalized, meaning that one sensor can detect different types of chemicals, rather than having a specific sensor dedicated to each potential chemical. The researchers provided the neural network with 20 specific parameters to assess, all of which are related to how a sample liquid interacts with the sensor’s electrical properties. Based on these researcher-specified parameters, the AI could accurately detect samples — including watered-down milks, different types of sodas, blends of coffee and multiple fruit juices at several levels of freshness — and report on their content with greater than 80% accuracy in about a minute.

Continue reading “A matter of taste: Electronic tongue reveals AI inner thoughts” »

Page 2 of 35012345678Last