Toggle light / dark theme

A self-acclaimed “deep tech” company focused on the next generation of computing has unveiled three smart contact lens prototypes at MWC 2025, giving us a glimpse into the technology that could shape vision health of the future.

XPANCEO took the covers off its three prototypes, each one showcasing a unique technology that could feature in future “smart” contact lenses.

REDMOND, Wash. — March 3, 2025 — On Monday, Microsoft Corp. is unveiling Microsoft Dragon Copilot, the first AI assistant for clinical workflow that brings together the trusted natural language voice dictation capabilities of DMO with the ambient listening capabilities of DAX, fine-tuned generative AI and healthcare-adapted safeguards. Part of Microsoft Cloud for Healthcare, Dragon Copilot is built on a secure modern architecture that enables organizations to deliver enhanced experiences and outcomes across care settings for providers and patients alike.

Clinician burnout in the U.S. dropped from 53% in 2023 to 48% in 2024, in part due to technology advancements. However, with an aging population, and persistent burnout felt across the profession, a significant U.S. workforce shortage is projected. In response, health systems are adopting AI to streamline administrative tasks, enhance care access, and enable faster clinical insights to improve healthcare globally.

“At Microsoft, we have long believed that AI has the incredible potential to free clinicians from much of the administrative burden in healthcare and enable them to refocus on taking care of patients,” said Joe Petro, corporate vice president of Microsoft Health and Life Sciences Solutions and Platforms. “With the launch of our new Dragon Copilot, we are introducing the first unified voice AI experience to the market, drawing on our trusted, decades-long expertise that has consistently enhanced provider wellness and improved clinical and financial outcomes for provider organizations and the patients they serve.”

Scientists have discovered a natural compound that can halt a key process involved in the progression of certain cancers and demyelinating diseases—conditions that damage the protective myelin sheath surrounding neurons, such as multiple sclerosis (MS).

A study published in the Journal of Biological Chemistry identified a plant-derived flavonoid called sulfuretin as an inhibitor of an enzyme linked to both MS and cancer. The research, conducted in cell models at Oregon Health & Science University, demonstrated that sulfuretin effectively blocked the enzyme’s activity. The next phase of research will involve testing the compound in animal models to evaluate its therapeutic potential, effectiveness, and possible side effects in treating cancer and neurodegenerative diseases like MS.

Researchers at NYU Abu Dhabi (NYUAD) have developed an innovative tool that enhances surgeons’ ability to detect and remove cancer cells during cryosurgery, a procedure that uses extreme cold to destroy tumors. This breakthrough technology involves a specialized nanoscale material that illuminates cancer cells under freezing conditions, making them easier to distinguish from healthy tissue and improving surgical precision.

Detailed in the study “Freezing-Activated Covalent Organic Frameworks for Precise Fluorescence Cryo-Imaging of Cancer Tissue” in the Journal of the American Chemical Society, the Trabolsi research group at NYUAD designed a unique nanoscale covalent organic framework (nTG-DFP-COF) that responds to by increasing its fluorescence. This makes it possible to clearly differentiate between cancerous and healthy tissues during surgery.

The material, prepared by Gobinda Das, Ph.D., a researcher in the Trabolsi Research Group at NYUAD, is engineered to be biocompatible and low in toxicity, ensuring it interacts safely within the body. Importantly, it maintains its fluorescent properties even in the presence of ice crystals inside cells, allowing monitoring during cryosurgery.

Quantitative phase imaging (QPI) is a microscopy technique widely used to investigate cells. Even though earlier biomedical applications based on QPI have been developed, both acquisition speed and image quality need to improve to guarantee a widespread reception.

Scientists from the Görlitz-based Center for Advanced Systems Understanding (CASUS) at Helmholtz-Zentrum Dresden-Rossendorf (HZDR) as well as Imperial College London and University College London suggest leveraging an optical phenomenon called chromatic aberration—that usually degrades image quality—to produce suitable images with standard microscopes.

Summary: A new international study reveals that schizophrenia manifests differently in the brain, reflecting the wide range of symptoms among patients. Researchers analyzed imaging data from over 6,000 individuals and found that while some brain structures vary significantly, others remain highly uniform.

Brain folding patterns in the mid-frontal region were consistently similar across patients, suggesting a less flexible developmental process in early childhood. These findings highlight the need for precision medicine approaches tailored to each patient’s neurobiological profile.

The results show two distinct patterns in the protective effect of natural infection against reinfection in the Omicron era compared to the pre-Omicron era. Before the emergence of Omicron, natural infection offered robust protection against reinfection, with roughly 80% effectiveness and minimal signs of waning over time after the infection. However, during the Omicron era, this protection was strong only for recently infected individuals, rapidly declining over time after the infection and ultimately diminishing within a year. These patterns were consistent regardless of whether any infection or only symptomatic infection was considered as an outcome, and for both vaccinated and unvaccinated populations.

The two distinct patterns observed in the Omicron versus pre-Omicron eras provide population-level results that validate previous experimental molecular evidence1,2,18,19,20, and are probably the result of a complex interplay of several interrelated factors, in addition to waning immunity, immune evasion and the accelerated and convergent evolution of Omicron, such as immune imprinting, varying immunogenicity, global population immunity faced by the strains and population characteristics associated with infections at different stages of the pandemic.

Whereas these factors are interconnected and challenging to disentangle, the observed differences in protection against reinfection may stem from distinct evolutionary pressures acting on SARS-CoV-2 during the pre-Omicron and Omicron eras. In the pre-Omicron era, with a large proportion of individuals remaining immune naive because of non-pharmaceutical interventions and delayed scale-up of vaccination, intrinsic transmissibility may have been the primary driver of viral adaptation. This was evidenced by the emergence of more transmissible variants such as Alpha4,22,23 and Delta24,25. Conversely, following the very large and widespread Omicron wave in early 2022 (Extended Data Fig. 3)26, most individuals possessed some level of immunity, either from infection or vaccination. This may have shifted the dominant evolutionary pressure towards immune escape through not only antigenic drift, but also recombination and convergent evolution as the adaptive mechanisms for the virus2,18,27,28.

Constantly worrying about events beyond your control significantly harms your physical health.

S stress-response system activated, leading to chronic stress. Over time, such stress can weaken the immune system, making us more susceptible to infections and illnesses. + Additionally, chronic stress is linked to cardiovascular issues, including hypertension and an increased risk of heart disease.

S prolonged exposure to stress hormones like cortisol can also lead to digestive problems, muscle tension, and headaches. + Moreover, the mental strain from focusing on uncontrollable factors can lead to unhealthy coping mechanisms, such as overeating or substance abuse, further impacting physical well-being.

S out there. It gets better. +

Get help: https://www.nimh.nih.gov/health/find-help

In this video, we explore seven astonishing breakthroughs leading us closer to age reversal and longer, healthier lives by 2025. From mapping the complete fruit fly brain for deeper insights into neurobiology, to AI-driven drug discovery breakthroughs by Insilico Medicine, these cutting-edge innovations are changing the way we understand and tackle aging. We’ll also dive into the growing world of microbiome-targeting startups, and Dr. Ben Goertzel’s vision for an AI-driven future where extended longevity and superintelligence converge. Whether you’re interested in the most advanced biotech research, the latest in computational biology, or the promise of AGI to transform healthcare, this video covers the game-changing science that could redefine what it means to grow older.

Stay tuned for expert insights on how these remarkable advancements might help us inch closer to “longevity escape velocity.” Be sure to check the description for links to the studies, articles, and visionary leaders shaping tomorrow’s health landscape.

00:00 intro.
01:25 Dont Die Documentary Cameo.
03:30 Folistatin Gene Therapy.
06:15 Cellular Reprogramming.
09:00 Decentralized Science.
11:50 Human Brain Simulation.
14:53 AI Designed Drugs.
18:08 Microbiome.
21:25 Ben Goertzel AI+Longevity.

Mentioned vids: part 1: the surprising environmental impacts of an aging cure. • the surprising environmental impacts…