Toggle light / dark theme

Stem cell-loaded hydrogel boosts healing process of aging muscles

It’s an unfortunate fact of life that as we get older, our cells gradually lose the ability to heal themselves. Thankfully, at least one aspect of that might be treatable in the near future, if new work from Georgia Tech pans out. Researchers have developed a hydrogel that holds muscle stem cells, and by injecting this near the site of a muscle injury they can get to work repairing it. The team says the technique could be effective at treating injuries in the elderly and people with muscular dystrophy.

Strange Lakes Are Speeding Up Arctic Permafrost Melt, And That’s Really Bad News

The Arctic permafrost really should stay frozen. In many places it’s been frozen for tens of thousands of years, locking away greenhouse gasses and ancient diseases.

Unfortunately, our planet’s changing climate is denting permafrosts around the world. And now NASA-funded research has confirmed that the expected gradual thawing of the Arctic permafrost is being dramatically sped up by a natural phenomenon known as thermokarst lakes.

These lakes form when a lot of ice in the deep soil melts. Water takes up less space than ice, so this leaves room for water to collect from other sources as well, including rain and snow.

Kelsey Moody — Antibody Mimetic for Parkinson’s Disease

Today, we would like to share with you the talk given by Kelsey Moody, CEO of Biotech Company Ichor, at the recent Ending Age-Related Diseases: Investment Prospects & Advances in Research conference in New York City. In this talk, Kelsey discusses Ichor’s protein engineering platform, how Ichor has used it, and Ichor’s plans for using it to discover new classes of drugs for age-related diseases.

Kelsey is a process-oriented biotechnology executive who has specialized in the study of aging and aging mechanisms for over a decade. Since 2013, he has successfully built Ichor Therapeutics from a living room start-up into a premier, vertically integrated contract research organization that focuses on preclinical research services for aging pathways. Proceeds from this work are used to self-fund R&D initiatives that constitute Ichor’s portfolio companies in enzyme therapy (Lysoclear, Inc.), small molecule drug discovery (Antoxerene, Inc.), and protein engineering (RecombiPure, Inc.) Kelsey has received graduate-level training in medicine, business, and laboratory research.

Weaponizing oxygen to kill infections and disease

The life-threatening bacteria called MRSA can cripple a hospital since it spreads quickly and is resistant to treatment. But scientists report that they are now making advances in a new technique that avoids antibiotics. Instead, they are using light to activate oxygen, which then wipes out antibiotic-resistant bacteria. The method also could be used to treat other microbial infections, and possibly even cancer.

The researchers are presenting their results today at the 256th National Meeting & Exposition of the American Chemical Society (ACS).

Clinical facilities currently have few alternatives when trying to rid their patients of MRSA (methicillin-resistant Staphylococcus aureus). The Veterans Health Care System, for example, hires infection prevention staff to track hand hygiene. Going even further, one recent study found that disinfecting every patient admitted to an acute-care setting cut the rate of bloodstream infections in half. However, this procedure isn’t feasible at most hospitals.

Keynote: “Future of Healthy Longevity”

Lincoln Cannon asked me to do a talk a few months ago for the MTA. It was a good time. I learned a lot from the other speakers. Bryan Johnson opened the event and it was interesting to learn about his path and vision for the future. I would like to see many more people in his position. My goal is to make many millionaires out of biotech visionaries through the BioViva platform so that they can reinvest into great tech. Thanks, Lincoln and Bryan!


At the 2018 Conference of the Mormon Transhumanist Association, held 7 Apr 2018 at the Marriott Hotel and Conference Center in Provo, UT, speakers addressed the themes of Mormonism, Transhumanism and Transfigurism, with particular attention to topics at the intersection of technology, spirituality, science and religion. Members, friends and critics of the association have many views. This is one of them. It is not necessarily shared by others.

Making aquafeed more sustainable: Scientists develop feeds using a marine microalga co-product

Dartmouth scientists have created a more sustainable feed for aquaculture by using a marine microalga co-product as a feed ingredient. The study is the first of its kind to evaluate replacing fishmeal with a co-product in feed designed specifically for Nile tilapia. The results are published in the open access journal, PLOS ONE.

Aquaculture is the world’s fastest growing food sector, surpassing the global capture fisheries production in 2014. It provides more than 50 percent of the food supply to humans; however, it poses several environmental concerns. Aquaculture feed (aquafeeds) draws on 70 percent of the world’s and , which is obtained from small, ocean-caught fish such as anchovies, sardines, herring, menhaden, and mackerel¬, that are essential to the lower end of the . Analysts project that by 2040, the demand for fishmeal and fish oil will exceed supply. Aquafeeds also draw on large amounts of soy and corn from industrial farms, which pose other environmental concerns due to the use of fertilizers and potential runoff into rivers, lakes and coastal waters. In addition, aquafeeds may trigger nutrient pollution in aquaculture effluent, as fish are unable to fully digest soy and corn, which are major feed ingredients.

To address the environmental sustainability concerns regarding aquafeed, a Dartmouth team has been developing sustainable feeds for Nile tilapia, which examine the effectiveness of replacing fishmeal and fish oil with different types of marine microalgae. Marine microalgae are excellent sources of , minerals, vitamins, and omega-3 fatty acids, and can therefore, meet the nutrient requirements of fish. Omega-3 fatty acids are important for maintaining fish health; they also have neurological, cardiovascular and anti-cancer benefits to humans.

/* */