Blog

Archive for the ‘biotech/medical’ category: Page 2789

Sep 26, 2013

Grindhouse Wetware — Support Open Source Transhumanism

Posted by in categories: biotech/medical, business, open source

Grindhouse Wetware is a collective of makers and engineers founded on a basic principle – human augmentation should be accessible and open. All of our devices are built off of open source platforms. This allows our users to peer into the hardware and code of their implanted device and truly control their augmented experience. Grindhouse Wetware’s devices are tailored to Makers and DIY Transhumanists that want to build a specific, unique augmentation. What do you want to be?

After three years of development, our flagship project – Circadia, is in its final stages. Grindhouse Wetware is seeking financial support from individuals or organizations to facilitate the production of this device.

The Circadia implant records bio-medical data and transmits it to the user’s phone via bluetooth. Instead of a snapshot of the user’s state of health, the Circadia records the up-to-date status of the their well being. Grindhouse Wetware firmly believes that once an implant has been installed in an individual, it becomes a part of their person. As such, the data generated by the Circadia belongs to the user.

If you are interested in supporting Grindhouse Wetware and the Circadia implant, please contact me at [email protected] or 631−715−9209

Continue reading “Grindhouse Wetware — Support Open Source Transhumanism” »

Sep 3, 2013

Longevitize!: Essays on the Science, Philosophy & Politics of Longevity

Posted by in categories: biological, biotech/medical, education, ethics, futurism, human trajectories, life extension, lifeboat, media & arts, philosophy, policy

longevitize2013 med

Containing more than 160 essays from over 40 contributors, this edited volume of essays on the science, philosophy and politics of longevity considers the project of ending aging and abolishing involuntary death-by-disease from a variety of viewpoints: scientific, technological, philosophical, pragmatic, artistic. In it you will find not only information on the ways in which science and medicine are bringing about the potential to reverse aging and defeat death within many of our own lifetimes, as well as the ways that you can increase your own longevity today in order to be there for tomorrow’s promise, but also a glimpse at the art, philosophy and politics of longevity as well – areas that will become increasingly important as we realize that advocacy, lobbying and activism can play as large a part in the hastening of progress in indefinite lifespans as science and technology can.

The collection is edited by Franco Cortese. Its contributing authors include William H. Andrews, Ph.D., Rachel Armstrong, Ph.D., Jonathan Betchtel, Yaniv Chen, Clyde DeSouza, Freija van Diujne, Ph.D., John Ellis, Ph.D., Linda Gamble, Roen Horn, the International Longevity Alliance (ILA), Zoltan Istvan, David Kekich (President & C.E.O of Maximum Life Foundation), Randal A. Koene, Ph.D., Maria Konovalenko, M.Sc. (Program Coordinator for the Science for Life Extension Foundation), Marios Kyriazis, MD, M.Sc MIBiol, CBiol (Founder of the ELPIs Foundation for Indefinite Lifespans and the medical advisor for the British Longevity Society), John R. Leonard (Director of Japan Longevity Alliance), Alex Lightman, Movement for Indefinite Life Extension (MILE), Josh Mitteldorf, Ph.D., Tom Mooney (Executive Director of the Coalition to Extend Life), Max More, Ph.D. , B.J. Murphy, Joern Pallensen, Dick Pelletier, Hank Pellissier (Founder of Brighter Brains Institute), Giulio Prisco, Marc Ransford, Jameson Rohrer, Martine Rothblatt, Ph.D., MBA, JD., Peter Rothman (editor-in-chief of H+ Magazine), Giovanni Santostasi, Ph.D (Director of Immortal Life Magazine, Eric Schulke, Jason Silva , R.U. Sirius, Ilia Stambler, Ph.D (activist at the International Longevity Alliance), G. Stolyarov II (editor-in-chief of The Rational Argumentator), Winslow Strong, Jason Sussberg, Violetta Karkucinska, David Westmorland, Peter Wicks, Ph.D, and Jason Xu (director of Longevity Party China and Longevity Party Taiwan).

Available on Amazon today!

Aug 5, 2013

Meat grown in labs is the next logical step for food production

Posted by in categories: biotech/medical, futurism, sustainability

By Avi Roy, University of Buckingham

In his essay “Fifty Years Hence”, Winston Churchill speculated, “We shall escape the absurdity of growing a whole chicken in order to eat the breast or wing, by growing these parts separately under a suitable medium.”

At an event in London today, the first hamburger made entirely from meat grown through cell culture will be cooked and consumed before a live audience. In June at the TED Global conference in Edinburgh, Andras Forgacs took a step even beyond Churchill’s hopes. He unveiled the world’s first leather made from cells grown in the lab.

These are historic events. Ones that will change the discussion about lab-grown meat from blue-skies science to a potential consumer product which may soon be found on supermarket shelves and retail stores. And while some may perceive this development as a drastic shake-up in the world of agriculture, it really is part of the trajectory that agricultural technology is already following.

Continue reading “Meat grown in labs is the next logical step for food production” »

Jul 3, 2013

Human Destiny is to Eliminate Death — Essays, Rants & Arguments on Immortalism (Edited Volume)

Posted by in categories: biological, biotech/medical, education, ethics, fun, futurism, human trajectories, life extension, media & arts, neuroscience, philosophy, policy, rants

coveroriginalhankImmortal Life has complied an edited volume of essays, arguments, and debates about Immortalism titled Human Destiny is to Eliminate Death from many esteemed ImmortalLife.info Authors (a good number of whom are also Lifeboat Foundation Advisory Board members as well), such as Martine Rothblatt (Ph.D, MBA, J.D.), Marios Kyriazis (MD, MS.c, MI.Biol, C.Biol.), Maria Konovalenko (M.Sc.), Mike Perry (Ph.D), Dick Pelletier, Khannea Suntzu, David Kekich (Founder & CEO of MaxLife Foundation), Hank Pellissier (Founder of Immortal Life), Eric Schulke & Franco Cortese (the previous Managing Directors of Immortal Life), Gennady Stolyarov II, Jason Xu (Director of Longevity Party China and Longevity Party Taiwan), Teresa Belcher, Joern Pallensen and more. The anthology was edited by Immortal Life Founder & Senior Editor, Hank Pellissier.

This one-of-a-kind collection features ten debates that originated at ImmortalLife.info, plus 36 articles, essays and diatribes by many of IL’s contributors, on topics from nutrition to mind-filing, from teleomeres to “Deathism”, from libertarian life-extending suggestions to religion’s role in RLE to immortalism as a human rights issue.

The book is illustrated with famous paintings on the subject of aging and death, by artists such as Goya, Picasso, Cezanne, Dali, and numerous others.

The book was designed by Wendy Stolyarov; edited by Hank Pellissier; published by the Center for Transhumanity. This edited volume is the first in a series of quarterly anthologies planned by Immortal Life

Continue reading “Human Destiny is to Eliminate Death — Essays, Rants & Arguments on Immortalism (Edited Volume)” »

Jun 22, 2013

Extreme Lifespans via Exposure to Information

Posted by in categories: biotech/medical, evolution, life extension

It may be possible one day to use effective biotechnological therapies in order to achieve extreme lifespans. In the meantime, instead of just waiting for these therapies, it may be more fruitful to live a life of constant stimulation, hyper-connection and avoidance of regularity. This is something that everybody can do today, and may have a direct impact upon radical life extension, not only for the individual but also for society.

For some time now I have been advocating the notion that exposure to meaningful information may be one way of achieving radical life extension. By meaningful information I mean anything that requires action, and not just feeding your brain with routine sets of data. Examples of this include being hyper-connected in a digital world, an enriched environment (both in the personal space and in society as a whole), a hormetic lifestyle, behavioural models such as a goal-seeking behaviour, search for excellence, and a bias for action, as well as the pursuit innovation, diversification, creativity and novelty. Most importantly, the avoidance of routine and mediocrity.

This information-rich lifestyle up-regulates the function of the brain and may have an impact upon cell immortalisation. In my latest paper (http://arxiv.org/abs/1306.2734 I provide an explanation of the exact mechanisms. I argue that the relentless exposure to useful information creates new and persisting demands for energy resources in order for this information to be assimilated by the neurons. If this process continues for some time, there will come a point where our biological mechanisms will undergo a phase transition, in effect creating a new biology. Not one based on sex and reproduction but one based on information and somatic survival.

One possible mechanism involves the immortalisation sequences of germ cells. As we know, the DNA in germ cells is essentially immortal because it is somehow able to repair age-related damage effectively. Recent research shows that some of these immortalisation mechanisms do not originate from the germ cells but from the somatic cells! In other words, our bodily cells create biological material such as error-free sequences of DNA and instead of using this themselves for their own survival, they pass it on to the germ cells to assure the survival of the species. This means that the germ-line remains immortal whereas the bodily cells eventually age and die.

Continue reading “Extreme Lifespans via Exposure to Information” »

Jun 10, 2013

Intimations of Imitations: Visions of Cellular Prosthesis & Functionally-Restorative Medicine

Posted by in categories: biological, biotech/medical, chemistry, engineering, futurism, life extension, nanotechnology, neuroscience

In this essay I argue that technologies and techniques used and developed in the fields of Synthetic Ion Channels and Ion Channel Reconstitution, which have emerged from the fields of supramolecular chemistry and bio-organic chemistry throughout the past 4 decades, can be applied towards the purpose of gradual cellular (and particularly neuronal) replacement to create a new interdisciplinary field that applies such techniques and technologies towards the goal of the indefinite functional restoration of cellular mechanisms and systems, as opposed to their current proposed use of aiding in the elucidation of cellular mechanisms and their underlying principles, and as biosensors.

In earlier essays (see here and here) I identified approaches to the synthesis of non-biological functional equivalents of neuronal components (i.e. ion-channels ion-pumps and membrane sections) and their sectional integration with the existing biological neuron — a sort of “physical” emulation if you will. It has only recently come to my attention that there is an existing field emerging from supramolecular and bio-organic chemistry centered around the design, synthesis, and incorporation/integration of both synthetic/artificial ion channels and artificial bilipid membranes (i.e. lipid bilayer). The potential uses for such channels commonly listed in the literature have nothing to do with life-extension however, and the field is to my knowledge yet to envision the use of replacing our existing neuronal components as they degrade (or before they are able to), rather seeing such uses as aiding in the elucidation of cellular operations and mechanisms and as biosensors. I argue here that the very technologies and techniques that constitute the field (Synthetic Ion-Channels & Ion-Channel/Membrane Reconstitution) can be used towards the purpose of the indefinite-longevity and life-extension through the iterative replacement of cellular constituents (particularly the components comprising our neurons – ion-channels, ion-pumps, sections of bi-lipid membrane, etc.) so as to negate the molecular degradation they would have otherwise eventually undergone.

While I envisioned an electro-mechanical-systems approach in my earlier essays, the field of Synthetic Ion-Channels from the start in the early 70’s applied a molecular approach to the problem of designing molecular systems that produce certain functions according to their chemical composition or structure. Note that this approach corresponds to (or can be categorized under) the passive-physicalist sub-approach of the physicalist-functionalist approach (the broad approach overlying all varieties of physically-embodied, “prosthetic” neuronal functional replication) identified in an earlier essay.

The field of synthetic ion channels is also referred to as ion-channel reconstitution, which designates “the solubilization of the membrane, the isolation of the channel protein from the other membrane constituents and the reintroduction of that protein into some form of artificial membrane system that facilitates the measurement of channel function,” and more broadly denotes “the [general] study of ion channel function and can be used to describe the incorporation of intact membrane vesicles, including the protein of interest, into artificial membrane systems that allow the properties of the channel to be investigated” [1]. The field has been active since the 1970s, with experimental successes in the incorporation of functioning synthetic ion channels into biological bilipid membranes and artificial membranes dissimilar in molecular composition and structure to biological analogues underlying supramolecular interactions, ion selectivity and permeability throughout the 1980’s, 1990’s and 2000’s. The relevant literature suggests that their proposed use has thus far been limited to the elucidation of ion-channel function and operation, the investigation of their functional and biophysical properties, and in lesser degree for the purpose of “in-vitro sensing devices to detect the presence of physiologically-active substances including antiseptics, antibiotics, neurotransmitters, and others” through the “… transduction of bioelectrical and biochemical events into measurable electrical signals” [2].

Continue reading “Intimations of Imitations: Visions of Cellular Prosthesis & Functionally-Restorative Medicine” »

Jun 3, 2013

Stephen L. Coles is DYING and NEEDS your Help!

Posted by in categories: biotech/medical, finance, life extension

*** PLEASE alert your friends—Our own continued health and longevity may depend on Steve continuing his work.***

This call for support was also posted by Ilia Stambler on the Longevity Alliance Website, and organized on YouCaring.com by John M. Adams. Eric Schulke has also helped tremendously in spreading the word about the Fundraiser.

Since founding the Los Angeles Gerontology Research Group in 1990, Dr. L. Stephen Coles M.D., Ph.D., has worked tirelessly to develop new ways to slow and ultimately reverse human aging.

Everyone active in the LA-GRG or the Worldwide GRG Discussion Group have benefited from his expertise. His continual reporting of news about the latest developments to the List and his work in areas such as gathering blood samples for a complete genome analysis of the oldest people in the world (supercentenarians, aged 110+) is ground breaking and far ahead of anything that has ever been accomplished before. Publication of this work is expected in collaboration with Stanford University before the end of the year. Other accomplishments are equally notable

Continue reading “Stephen L. Coles is DYING and NEEDS your Help!” »

Jun 3, 2013

Lust for life: breaking the 120-year barrier in human ageing

Posted by in categories: biological, biotech/medical, life extension

By Avi Roy, University of Buckingham

In rich countries, more than 80% of the population today will survive past the age of 70. About 150 years ago, only 20% did. In all this while, though, only one person lived beyond the age of 120. This has led experts to believe that there may be a limit to how long humans can live.

Animals display an astounding variety of maximum lifespan ranging from mayflies and gastrotrichs, which live for 2 to 3 days, to giant tortoises and bowhead whales, which can live to 200 years. The record for the longest living animal belongs to the quahog clam, which can live for more than 400 years.

If we look beyond the animal kingdom, among plants the giant sequoia lives past 3000 years, and bristlecone pines reach 5000 years. The record for the longest living plant belongs to the Mediterranean tapeweed, which has been found in a flourishing colony estimated at 100,000 years old.

Continue reading “Lust for life: breaking the 120-year barrier in human ageing” »

Jun 1, 2013

Longevity’s Bottleneck May Be Funding, But Funding’s Bottleneck is Advocacy & Activism

Posted by in categories: biological, biotech/medical, human trajectories, life extension, policy

The following article was originally published by Immortal Life

When asked what the biggest bottleneck for Radical or Indefinite Longevity is, most thinkers say funding. Some say the biggest bottleneck is breakthroughs and others say it’s our way of approaching the problem (i.e. that we’re seeking healthy life extension whereas we should be seeking more comprehensive methods of indefinite life-extension), but the majority seem to feel that what is really needed is adequate funding to plug away at developing and experimentally-verifying the various, sometimes mutually-exclusive technologies and methodologies that have already been proposed. I claim that Radical Longevity’s biggest bottleneck is not funding, but advocacy.

This is because the final objective of increased funding for Radical Longevity and Life Extension research can be more effectively and efficiently achieved through public advocacy for Radical Life Extension than it can by direct funding or direct research, per unit of time or effort. Research and development obviously still need to be done, but an increase in researchers needs an increase in funding, and an increase in funding needs an increase in the public perception of RLE’s feasibility and desirability.

There is no definitive timespan that it will take to achieve indefinitely-extended life. How long it takes to achieve Radical Longevity is determined by how hard we work at it and how much effort we put into it. More effort means that it will be achieved sooner. And by and large, an increase in effort can be best achieved by an increase in funding, and an increase in funding can be best achieved by an increase in public advocacy. You will likely accelerate the development of Indefinitely-Extended Life, per unit of time or effort, by advocating the desirability, ethicacy and technical feasibility of longer life than you will by doing direct research, or by working towards the objective of directly contributing funds to RLE projects and research initiatives. (more…)

May 19, 2013

If you want to live longer, do nothing

Posted by in categories: biotech/medical, life extension

By Avi Roy, University of Buckingham

I want to live longer and help others do the same. I assumed the most effective way to do that is by understanding the science of aging and then engineering solutions to extend human lifespan. That is why I became a biomedical researcher and over the past several years I have pursued this goal almost single-mindedly.

When a 2004 study showed that reducing the calorie intake in mice extended their life by 42%, I enthusiastically embraced the results and even put myself on a calorie restricted diet. But, subsequently, a 2012 study showed that long-term calorie restriction may not have the promised benefits. On the contrary, fewer calories without the required nutrients might actually cause harm.

Calorie restriction is not the first such “promising” route that eventually did not live up to the promise, and it will not be the last. Antioxidants showed promise in holding back diseases caused by aging, but now we know that antioxidant supplements are more likely to shorten your life.

Continue reading “If you want to live longer, do nothing” »