Blog

Archive for the ‘biotech/medical’ category: Page 2444

Mar 4, 2017

New Evidence Links the Collapse of Aztec Society to a Deadly Salmonella Outbreak

Posted by in categories: biotech/medical, genetics

A new pathogen can have devastating consequences in genetically homogenous populations.


When Spanish forces arrived in Mexico in 1519, the native population was estimated to be around 25 million. A century later, there were only around 1 million left, following several devastating outbreaks of disease brought in from overseas.

Despite plenty of speculation, the diseases that contributed to the collapse of Aztec society remain unconfirmed. But now scientists have presented the first DNA evidence of a bacterial species from one of the worst epidemics — and it suggests that a deadly outbreak of salmonella might have been involved.

Continue reading “New Evidence Links the Collapse of Aztec Society to a Deadly Salmonella Outbreak” »

Mar 4, 2017

Californian researchers 3D print functioning blood vessels

Posted by in categories: 3D printing, bioprinting, biotech/medical

Researchers from the University of California, San Diego have successfully 3D printed a framework of functional blood vessels. Blood vessel networks are important in transporting blood, nutrients and waste around the human body.

The research team employed a 3D bioprinting process involving hydrogel and endothelial cells. Endothelial are the form of cells that make up the inner lining of blood vessels.

Leading the research was Shaochen Chen, who explains the motivation of the project.

Continue reading “Californian researchers 3D print functioning blood vessels” »

Mar 4, 2017

Transhumanism: More Nightmare Than Dream?

Posted by in categories: biotech/medical, cyborgs, ethics, law enforcement, life extension, policy, robotics/AI, transhumanism

A new well written but not very favorable write-up on #transhumanism. Despite this, more and more publications are tackling describing the movement and its science. My work is featured a bit.


On the eve of the 20th century, an obscure Russian man who had refused to publish any of his works began to finalize his ideas about resurrecting the dead and living forever. A friend of Leo Tolstoy’s, this enigmatic Russian, whose name was Nikolai Fyodorovich Fyodorov, had grand ideas about not only how to reanimate the dead but about the ethics of doing so, as well as about the moral and religious consequences of living outside of Death’s shadow. He was animated by a utopian desire: to unite all of humanity and to create a biblical paradise on Earth, where we would live on, spurred on by love. He was an immortalist: one who desired to conquer death through scientific means.

Despite the religious zeal of his notions—which a number of later Christian philosophers unsurprisingly deemed blasphemy—Fyodorov’s ideas were underpinned by a faith in something material: the ability of humans to redevelop and redefine themselves through science, eventually becoming so powerfully modified that they would defeat death itself. Unfortunately for him, Fyodorov—who had worked as a librarian, then later in the archives of Ministry of Foreign Affairs—did not live to see his project enacted, as he died in 1903.

Continue reading “Transhumanism: More Nightmare Than Dream?” »

Mar 3, 2017

These 12 Superbugs Could Wipe Out Humanity

Posted by in categories: biotech/medical, health

Antibiotic resistance continues to rise, and new drugs made to battle these increasingly formidable Most-Dangerous-Super-Bugs-D2microbes could take more than a decade to develop. In an effort to stress the urgency of this rising resistance, the World Health Organization (WHO) created a list of the twelve deadliest superbugs with which we are currently dealing.

The list is broken into three categories based on the severity of the threat (medium, high, or critical) that a given superbug poses. The three critical bacteria, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacteriaceae, are all already resistant to multiple drugs. One of these (Pseudomonas aeruginosa) actually explodes when they die, making them even more deadly.

Pathogens that cause more common diseases like food poisoning or gonorrhea round out the rest of the list. Some big hitters include MRSA and salmonella.

Continue reading “These 12 Superbugs Could Wipe Out Humanity” »

Mar 3, 2017

Researchers remotely control sequence in which 2-D sheets fold into 3D structures

Posted by in categories: bioengineering, biotech/medical, nanotechnology, satellites, solar power, sustainability

Inspired by origami, North Carolina State University researchers have found a way to remotely control the order in which a two-dimensional (2-D) sheet folds itself into a three-dimensional (3D) structure.

“A longstanding challenge in the field has been finding a way to control the sequence in which a 2-D sheet will fold itself into a 3D object,” says Michael Dickey, a professor of chemical and at NC State and co-corresponding author of a paper describing the work. “And as anyone who has done origami — or folded their laundry—can tell you, the order in which you make the folds can be extremely important.”

Continue reading “Researchers remotely control sequence in which 2-D sheets fold into 3D structures” »

Mar 3, 2017

Researchers demonstrate new type of laser

Posted by in categories: biotech/medical, computing, quantum physics

Lasers are everywhere nowadays: Doctors use them to correct eyesight, cashiers to scan your groceries, and quantum scientist to control qubits in the future quantum computer. For most applications, the current bulky, energy-inefficient lasers are fine, but quantum scientist work at extremely low temperatures and on very small scales. For over 40 years, they have been searching for efficient and precise microwave lasers that will not disturb the very cold environment in which quantum technology works.

A team of researchers led by Leo Kouwenhoven at TU Delft has demonstrated an on-chip laser based on a fundamental property of superconductivity, the ac Josephson effect. They embedded a small section of an interrupted superconductor, a Josephson junction, in a carefully engineered on-chip cavity. Such a device opens the door to many applications in which microwave radiation with minimal dissipation is key, for example in controlling qubits in a scalable computer.

The scientists have published their work in Science on the 3rd of March.

Read more

Mar 3, 2017

Big nanotechnology advance could spell end of deadly organ shortage

Posted by in categories: biotech/medical, nanotechnology

Frozen organs could be brought back to life safely one day with the aid of nanotechnology, a new study finds. The development could help make donated organs available for virtually everyone who needs them in the future, the researchers say.

The number of donated organs that could be transplanted into patients could increase greatly if there were a way to freeze and reheat organs without damaging the cells within them.

In the new work, scientists developed a way to safely thaw frozen tissues with the aid of nanoparticles — particles only nanometers or billionths of a meter wide. (In comparison, the average human hair is about 100,000 nanometers wide.)

Continue reading “Big nanotechnology advance could spell end of deadly organ shortage” »

Mar 3, 2017

Want more crop variety? Researchers propose using CRISPR to accelerate plant domestication

Posted by in categories: bioengineering, biotech/medical, food, genetics, sustainability

The more crops we cultivate, the less chance our food supply wil get wiped out by a disease.


Out of the more than 300,000 plant species in existence, only three species—rice, wheat, and maize—account for most of the plant matter that humans consume, partly because in the history of agriculture, mutations arose that made these crops the easiest to harvest. But with CRISPR technology, we don’t have to wait for nature to help us domesticate plants, argue researchers at the University of Copenhagen. In a Review published March 2 in Trends in Plant Science, they describe how gene editing could make, for example, wild legumes, quinoa, or amaranth, which are already sustainable and nutritious, more farmable.

“In theory, you can now take those traits that have been selected for over thousands of years of crop domestication—such as reduced bitterness and those that facilitate easy harvest—and induce those mutations in plants that have never been cultivated,” says senior author Michael Palmgren, a botanist who heads an interdisciplinary think tank called “Plants for a Changing World” at the University of Copenhagen.

Continue reading “Want more crop variety? Researchers propose using CRISPR to accelerate plant domestication” »

Mar 3, 2017

Growing tissue grafts on humanoid robots: A future strategy in regenerative medicine?

Posted by in categories: biotech/medical, cyborgs, robotics/AI, space travel

Humanoid robots may enhance growth of musculoskeletal tissue grafts for tissue transplant applications.

Over the past decade, exciting progress has been made in the development of humanoid robots. The significant potential future value of humanoids includes applications ranging from personal assistance to medicine and space exploration. In particular, musculoskeletal humanoids (such as Kenshiro and Eccerobot) were developed to interact with humans in a safer and more natural way (1, 2). They aim to closely replicate the detailed anatomy of the human musculoskeletal system including muscles, tendons, and bones.

With their structures activated by artificial muscles, musculoskeletal humanoids have the ability to mimic more accurately the multiple degrees of freedom and the normal range of forces observed in human joints. As a result, it is not surprising that they offer new opportunities in science and medicine. Here, we suggest that musculoskeletal robots may assist in the growth of musculoskeletal tissue grafts for tissue transplant applications.

Read more

Mar 1, 2017

4 Ways this revolutionary gene-editing tool could change the world

Posted by in categories: biotech/medical, genetics

The woolly mammoth has been extinct for more than 4000 years. Now scientists are talking about bringing it back with the help of a powerful gene-editing technique called CRISPR-Cas9.

But CRISPR’s promise extends far beyond the possibility to resurrect extinct animals. It may also have the potential to boost crop yields and create alternatives fuel sources, protect us from insect-borne scourges like malaria and Zika, and even cure cancer.

Read more