Blog

Archive for the ‘biological’ category: Page 97

Aug 29, 2022

Scientists are unraveling the mystery of the arrow of time

Posted by in categories: biological, neuroscience, particle physics

The flow of time from the past to the future is a central feature of how we experience the world. But precisely how this phenomenon, known as the arrow of time, arises from the microscopic interactions among particles and cells is a mystery—one that researchers at the CUNY Graduate Center Initiative for the Theoretical Sciences (ITS) are helping to unravel with the publication of a new paper in the journal Physical Review Letters. The findings could have important implications in a variety of disciplines, including physics, neuroscience, and biology.

Fundamentally, the of arises from the second law of thermodynamics: the principle that microscopic arrangements of physical systems tend to increase in randomness, moving from order to disorder. The more disordered a system becomes, the more difficult it is for it to find its way back to an ordered state, and the stronger the arrow of time. In short, the universe’s tendency toward disorder is the fundamental reason why we experience time flowing in one direction.

“The two questions our team had were, if we looked at a particular system, would we be able to quantify the strength of its arrow of time, and would we be able to sort out how it emerges from the micro scale, where cells and interact, to the whole system?” said Christopher Lynn, the paper’s first author and a postdoctoral fellow with the ITS program. “Our findings provide the first step toward understanding how the arrow of time that we experience in emerges from these more microscopic details.”

Aug 27, 2022

Quantum-Inspired Acromyrmex Evolutionary Algorithm

Posted by in categories: biological, information science, quantum physics, singularity

Circa 2019 face_with_colon_three Biological singularity here we come :3.


Scientific Reports volume 9, Article number: 12,181 (2019) Cite this article.

Aug 25, 2022

Baidu Releases Superconducting Quantum Computer and World’s First All-Platform Integration Solution, Making Quantum Computing Within Reach

Posted by in categories: biological, finance, quantum physics, robotics/AI

“Everyone can quantum.”

Chinese multinational technology company Baidu just released its first quantum computer on Thursday. The first superconducting quantum computer, “Qian Shi” can integrate hardware, software, and many applications. Baidu also introduced the world’s first all-platform quantum hardware-software integration solution — Liang Xi — that provides access to various quantum chips via mobile app, PC, and cloud.

Qian Shi is expected to solve data that a standard computer cannot calculate and problems that cannot be solved. This development is also thought to be a breakthrough in artificial intelligence, computational biology, material simulation, and financial technology.

Continue reading “Baidu Releases Superconducting Quantum Computer and World’s First All-Platform Integration Solution, Making Quantum Computing Within Reach” »

Aug 24, 2022

Physicists Are Unraveling the Mystery of the Arrow of Time

Posted by in categories: biological, neuroscience, particle physics

A new study by theoretical physicists has made progress toward identifying how particles and cells give rise to large-scale dynamics that we experience as the passage of time.

A central feature of how we experience the world is the flow of time from the past to the future. But it is a mystery precisely how this phenomenon, known as the arrow of time, arises from the microscopic interactions among particles and cells. Researchers at the CUNY Graduate Center Initiative for the Theoretical Sciences (ITS) are helping to unravel this enigma with the publication of a new paper in the journal Physical Review Letters. The findings could have important implications in a wide range of disciplines, including physics, neuroscience, and biology.

Fundamentally, the arrow of time emerges from the second law of thermodynamics. This is the principle that microscopic arrangements of physical systems tend to increase in randomness, moving from order to disorder. The more disordered a system becomes, the more difficult it is for it to find its way back to an ordered state, and the stronger the arrow of time. In short, the universe’s propensity toward disorder is the fundamental reason why we experience time flowing in one direction.

Aug 24, 2022

Schrödinger’s Bacteria? Physics Experiment Leads to 1st Entanglement of Living Organisms

Posted by in categories: biological, quantum physics

Circa 2018 face_with_colon_three


A paper published in 2017 appeared to show a limited quantum effect in bacteria. Now scientists argue that something much weirder happened.

Aug 24, 2022

The Space Gardener’s Guide to Artemis I (GotG47)

Posted by in categories: biological, space travel

With the launch of NASA’s Artemis I mission to the Moon just days away, Emma the Space Gardener has put together a guide covering the highlights of the mission for space gardeners. Learn about the space biology experiments on their way to their Moon, the seeds stashed away in the Orion capsule, and more!

Aug 22, 2022

MIT Engineers Create ‘E-Skin’ That Wirelessly Monitors Biological Signals

Posted by in categories: biological, computing

Engineers at MIT have devised a flexible “electronic skin” that communicates wirelessly—without a single chip in sight.

Aug 17, 2022

Artemis I to Launch First-of-a-Kind Deep Space Biology Mission

Posted by in categories: biological, particle physics, space

Its Biosentinel mission will launch aboard Artemis I.

NASA’s sending living cells to deep space for the first time. The BioSentinel mission will be the first long-duration biology experiment in deep space, a NASA post.


BioSentinel will monitor the growth and activity of yeast cells as they get bombarded by high-energy radiation particles in deep space and beam the data back to NASA researchers on Earth to help safeguard astronaut heath.

Continue reading “Artemis I to Launch First-of-a-Kind Deep Space Biology Mission” »

Aug 16, 2022

Synapses as a model: Solid-state memory in neuromorphic circuits

Posted by in categories: biological, chemistry, computing, neuroscience

Certain tasks—such as recognizing patterns and language—are performed highly efficiently by a human brain, requiring only about one ten-thousandth of the energy of a conventional, so-called “von Neumann” computer. One of the reasons lies in the structural differences: In a von Neumann architecture, there is a clear separation between memory and processor, which requires constant moving of large amounts of data. This is time-and energy-consuming—the so-called von Neumann bottleneck. In the brain, the computational operation takes place directly in the data memory and the biological synapses perform the tasks of memory and processor at the same time.

In Forschungszentrum Jülich, scientists have been working for more than 15 years on special data storage devices and components that can have similar properties to the synapses in the human brain. So-called memristive memory devices, also known as , are considered to be extremely fast and energy-saving, and can be miniaturized very well down to the nanometer range. The functioning of memristive cells is based on a very special effect: Their electrical resistance is not constant, but can be changed and reset again by applying an external voltage, theoretically continuously. The change in resistance is controlled by the movement of oxygen ions. If these move out of the semiconducting metal oxide layer, the material becomes more conductive and the electrical resistance drops. This change in resistance can be used to store information.

The processes that can occur in cells are complex and vary depending on the material system. Three researchers from the Jülich Peter Grünberg Institute—Prof. Regina Dittmann, Dr. Stephan Menzel, and Prof. Rainer Waser—have therefore compiled their research results in a detailed review article, “Nanoionic memristive phenomena in metal oxides: the valence change mechanism.” They explain in detail the various physical and chemical effects in memristors and shed light on the influence of these effects on the switching properties of memristive cells and their reliability.

Aug 16, 2022

Neuralink Update — August 2022

Posted by in categories: biological, education, Elon Musk, robotics/AI

00:00 Intro.
01:12 Elon Musk on psychedelics/ MDMA
01:58 Tim Urban on brain-machine interfaces.
02:46 Domino’s mind ordering app.
04:48 Elon tweet: digital vs biological.
05:47 Head Neurosurgeon, Dr. Matthew MacDougall.
08:02 Shivon Zilis & Elon Musk twins!!
09:05 Neuralink founder, Paul Merolla departs.
11:17 https://neuralink.com/careers/
11:35 DeepMind Documentary: https://youtu.be/kFlLzFuslfQ

Patreon: https://www.patreon.com/neurapod/

Continue reading “Neuralink Update — August 2022” »

Page 97 of 230First949596979899100101Last