Blog

Archive for the ‘biological’ category: Page 75

Nov 22, 2022

Dr. David Sinclair

Posted by in categories: biological, genetics, life extension

Harvard University geneticist Dr. David Sinclair’s lab is developing a cheek swab test kit so that you can check your biological age at home. You then get updates on how to slow down and reverse your aging.


Find out how fast you’re aging with Tally Health. The future of healthy aging is here.

Nov 21, 2022

Messenger RNA

Posted by in categories: biological, chemistry

Messenger RNA

#biology #biochemistry #rna

Continue reading “Messenger RNA” »

Nov 21, 2022

The Extended Mind | Andy Clark

Posted by in categories: biological, cyborgs, mobile phones, robotics/AI

https://www.youtube.com/watch?v=5eVyphsl0x0

Where does the mind end and the world begin? Is the mind locked inside its skull, sealed in with skin, or does it expand outward, merging with things and places and other minds that it thinks with? What if there are objects outside—a pen and paper, a phone—that serve the same function as parts of the brain, enabling it to calculate or remember?

In their famous 1998 paper “The Extended Mind,” philosophers Andy Clark and David J. Chalmers posed those questions and answered them provocatively: cognitive processes “ain’t all in the head.” The environment has an active role in driving cognition; cognition is sometimes made up of neural, bodily, and environmental processes.

Continue reading “The Extended Mind | Andy Clark” »

Nov 21, 2022

The strange, brain-like memory of vanadium dioxide glass

Posted by in categories: biological, neuroscience

Vanadium dioxide is a strange material that “remembers” information and when it was stored. This is akin to biological memory.

Nov 21, 2022

What Underpins Exceptional Longevity?

Posted by in categories: biological, genetics, life extension

Summary: A new study will investigate the genetic and biological mysteries of extreme longevity and healthy aging.

Source: american federation for aging research.

Decades of research will be aided by the results of a study launched today – the most ambitious ever conducted to uncover and understand the genetic and biological mysteries of exceptional longevity and healthy aging.

Nov 20, 2022

Microbes may have survived for millions of years beneath the Martian surface

Posted by in categories: biological, particle physics, space

Ancient bacteria might be sleeping beneath the surface of Mars, where it has been shielded from the harsh radiation of space for millions of years, according to new research.

While no evidence of life has been found on the red planet, researchers simulated conditions on Mars in a lab to see how bacteria and fungi could survive. The scientists were surprised to discover that bacteria could likely survive for 280 million years if it was buried and protected from the ionizing radiation and solar particles that bombard the Martian surface.

The findings suggested that if life ever existed on Mars, the dormant evidence of it might still be located in the planet’s subsurface — a place that future missions could explore as they drill into Martian soil.

Nov 19, 2022

Activity of dying brain shines light on near-death experiences

Posted by in categories: biological, neuroscience

The first recorded brain activity of a person during their death suggests a biological trigger for near-death experiences.

Nov 15, 2022

Synthetic biology circuits can respond within seconds

Posted by in categories: bioengineering, biological, chemistry

Synthetic biology offers a way to engineer cells to perform novel functions, such as glowing with fluorescent light when they detect a certain chemical. Usually, this is done by altering cells so they express genes that can be triggered by a certain input.

However, there is often a long lag time between an event such as detecting a molecule and the resulting output, because of the time required for to transcribe and translate the necessary genes. MIT synthetic biologists have now developed an alternative approach to designing such , which relies exclusively on fast, reversible protein-protein interactions. This means that there’s no waiting for genes to be transcribed or translated into proteins, so circuits can be turned on much faster—within seconds.

“We now have a methodology for designing protein interactions that occur at a very fast timescale, which no one has been able to develop systematically. We’re getting to the point of being able to engineer any function at timescales of a few seconds or less,” says Deepak Mishra, a research associate in MIT’s Department of Biological Engineering and the lead author of the new study.

Nov 14, 2022

Bio-hybrid robotics built from living tissue | Shoji Takeuchi

Posted by in categories: biological, robotics/AI

Imagine a robot that could find human beings after a natural disaster because it has a mosquito’s ability to sense human sweat. Shoji Takeuchi of the University of Tokyo has already made a robotic finger that includes living tissue – here he explores possible applications of combining biological material with artificial materials in robotic systems.

http://www.weforum.org/
The World Economic Forum is the International Organization for Public-Private Cooperation. The Forum engages the foremost political, business, cultural and other leaders of society to shape global, regional and industry agendas. We believe that progress happens by bringing together people from all walks of life who have the drive and the influence to make positive change.

Continue reading “Bio-hybrid robotics built from living tissue | Shoji Takeuchi” »

Nov 12, 2022

Max Plank AI Researchers Have Developed Bio-Realistic Artificial Neurons That Can Work In A Biological Environment And Can Produce Diverse Spiking Dynamics

Posted by in categories: biological, chemistry, robotics/AI

The development of neuromorphic electronics depends on the effective mimic of neurons. But artificial neurons aren’t capable of operating in biological environments. Organic artificial neurons that work based on conventional circuit oscillators have been created, which require many elements for their implementation. An organic artificial neuron based on a compact nonlinear electrochemical element has been reported. This artificial neuron is sensitive to the concentration of biological species in its surroundings and can also operate in a liquid. The system offers in-situ operation, spiking behavior, and ion specificity in biologically relevant conditions, including normal physiological and pathological concentration ranges. While variations in ionic and biomolecular concentrations regulate the neuronal excitability, small-amplitude oscillations and noise in the electrolytic medium alter the dynamics of the neuron. A biohybrid interface is created in which an artificial neuron functions synergistically with biological membranes and epithelial cells in real-time.

Neurons are the basic units of the nervous system that are used to transmit and process electrochemical signals. They operate in a liquid electrolytic medium and communicate via gaps between the axon of presynaptic neurons and the dendrite of postsynaptic neurons. For effective brain-inspired computing, neuromorphic computing leverages hardware-based solutions that imitate the behavior of synapses and neurons. Neuron like dynamics can be established with conventional microelectronics by using oscillatory circuit topologies to mimic neuronal behaviors. However, these approaches can mimic only specific aspects of neuronal behavior by integrating many transistors and passive electronic components, resulting in a bulky biomemtic circuit unsuitable for direct in situ biointerfacing. Volatile and nonlinear devices based on spin torque oscillators or memristor can increase the integration density and emulate neuronal dynamics.

Page 75 of 217First7273747576777879Last