Toggle light / dark theme

How your eye color might increase your risk of seasonal affective disorder

Eyes with lower pigment (blue or grey eyes) don’t need to absorb as much light as brown or dark eyes before this information reaches the retinal cells. This might provide light-eyed people with some resilience to SAD.


Other theories propose it happens due to an imbalance in serotonin and melatonin in the body. Serotonin makes us feel energetic, while the release of melatonin makes us feel sleepy. Since melatonin is made from serotonin, people with SAD may potentially produce too much melatonin during the winter months, leaving them feeling lethargic or down.

All these studies are inconsistent and, in some cases, contradictory. But because SAD is likely due to a combination of many biological and physiological factors working together, these different explanations for what causes SAD may well be interconnected.

We have uncovered evidence that a person’s eye colour can have a direct effect on how susceptible they are to SAD.

Researchers develop powerful optical neuromorphic processor

An international team of researchers, led by Swinburne University of Technology, demonstrated what it claimed is the world’s fastest and most powerful optical neuromorphic processor for artificial intelligence (AI). It operates faster than 10 trillion operations per second (TeraOPs/s) and is capable of processing ultra-large scale data.

The researchers said this breakthrough represents an enormous leap forward for neural networks and neuromorphic processing in general. It could benefit autonomous vehicles and data-intensive machine learning tasks such as computer vision.

Artificial neural networks can ‘learn’ and perform complex operations with wide applications. Inspired by the biological structure of the brain’s visual cortex system, artificial neural networks extract key features of raw data to predict properties and behaviour with unprecedented accuracy and simplicity.

Deforestation’s Hidden Toll: Impact on Child Health

Do the impacts of deforestation go beyond the environment? What about human health, specifically the health of children? This is what a recent study published in Economics & Human Biology hopes to address as Dr. Gabriel Fuentes Cordoba, who is an associate professor of economics from Sophia University in Japan, investigated how deforestation in Cambodia effects the health of children around the time of their birth. This study holds the potential to help scientists, conservationists, and the public better understand the health effects of deforestation, specifically with the increasing effects of climate change around the world.

For the study, Dr. Fuentes Cordoba analyzed data obtained from the Cambodian Demographic Health Surveys and forest loss to ascertain the health impacts for pregnant women and children under five years of age who reside in areas of deforestation. In the end, Dr. Fuentes Cordoba discover alarming results that suggest deforestation exposure to women less than one year before pregnancy could lead to development of anemia, which is a precursor to malaria. This could result in significant health impacts on children being born, specifically reductions in birth weight, along with overall height and weight as they age.

“This research shows a negative impact of deforestation on child health,” Dr. Fuentes Cordoba said in a statement. “This negative impact may persist into adulthood and affect other aspects of wellbeing such as education acquisition and even wages. My findings indicate that future research should explore this aspect further.”

The 10 Stages of Artificial Intelligence

This definitely is a Lifeboat post embodying what Lifeboat is about, and it’s only about AI. They did a really good job explaining the 10 stages.


This video explores the 10 stages of AI, including God-Like AI. Watch this next video about the Technological Singularity: • Technological Singularity: 15 Ways It…
🎁 5 Free ChatGPT Prompts To Become a Superhuman: https://bit.ly/3Oka9FM
🤖 AI for Business Leaders (Udacity Program): https://bit.ly/3Qjxkmu.
☕ My Patreon: / futurebusinesstech.
➡️ Official Discord Server: / discord.

SOURCES:
• / whats-next-ai-10-stages-igor-van-gemert.
• The Singularity Is Near: When Humans Transcend Biology (Ray Kurzweil): https://amzn.to/3ftOhXI

💡 Future Business Tech explores the future of technology and the world.

Examples of topics I cover include:

Artificial Superintelligence: A Dive into the Mind of the Machine

While Artificial Intelligence (AI) focuses on simulating and surpassing human intelligence, Artificial Life (A-Life) takes a different approach. Instead of replicating cognitive abilities, A-Life seeks to understand and model fundamental biological processes through software, hardware, and even… wetware.

Forget Turing tests and chess games. A-Life scientists don’t care if their creations are “smart” in the traditional sense. Instead, they’re fascinated by the underlying rules that govern life itself. Think of it as rewinding the movie of evolution, watching it unfold again in a digital petri dish.

Neural Decoding Unveils Secrets of Navigation

Summary: A new study combines deep learning with neural activity data from mice to unlock the mystery of how they navigate their environment.

By analyzing the firing patterns of “head direction” neurons and “grid cells,” researchers can now accurately predict a mouse’s location and orientation, shedding light on the complex brain functions involved in navigation. This method, developed in collaboration with the US Army Research Laboratory, represents a significant leap forward in understanding spatial awareness and could revolutionize autonomous navigation in AI systems.

The findings highlight the potential for integrating biological insights into artificial intelligence to enhance machine navigation without relying on GPS technology.

Uncovering hidden states driving biological outcomes using machine learning

We developed Significant Latent Factor Interaction Discovery and Exploration (SLIDE), an interpretable machine learning approach that can infer hidden states (latent factors) underlying biological outcomes. These states capture the complex interplay between factors derived from multiscale, multiomic datasets across biological contexts and scales of resolution.

Materialism matters: The role of philosophy in science

In this first article in a series on philosophy and science, we take a look at materialism and why it is fundamental to science.

A short disclaimer before we read further: I’m a materialist. Materialism is a branch of philosophy to which the sciences, particularly the physical and life sciences, owe a lot. Materialism posits that the material world — matter — exists, and everything in the Universe, including consciousness, is made from or is a product of matter. An objective reality exists and we can understand it. Without materialism, physics, chemistry, and biology as we know it wouldn’t exist.

Another branch of philosophy, idealism, is in direct contradiction to materialism. Idealism states that, instead of matter, the mind and consciousness are fundamental to reality; that they are immaterial and therefore independent of the material world.