Toggle light / dark theme

Transportation @ PNNL: Eliminating Critical Materials in Batteries

Pacific Northwest National Laboratory draws on its distinguishing strengths in chemistry, Earth sciences, biology and data science to advance scientific knowledge and address challenges in energy resiliency and national security. Founded in 1965, PNNL is operated by Battelle and supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit the DOE Office of Science website. For more information about PNNL, visit PNNL’s News Center. Follow us on X, Facebook, LinkedIn and Instagram.

Scientists Build Synthetic Cells That Tell Time

Scientists engineered synthetic cells that accurately keep time using biological clock proteins, offering new insights into how circadian rhythms resist molecular noise.

Researchers at UC Merced have successfully created tiny artificial cells capable of keeping time with remarkable precision, closely resembling the natural daily cycles observed in living organisms. This discovery offers new insight into how biological clocks maintain accurate timing, even amid the random molecular fluctuations that occur within cells.

Published in Nature Communications.

Anticipation of a virtual infectious pathogen is enough to prompt real biological defenses

Researchers led by the University of Geneva and École Polytechnique Fédérale de Lausanne report that neural anticipation of virtual infection triggers an immune response through activation of innate lymphoid cells.

Innate lymphoid cells (ILCs) are a type of immune cell crucial for early immune responses. They do not rely on antigen recognition like adaptive immune cells but respond quickly and effectively to various inflammatory signals and pathogen-associated cues, playing an essential role in early defense.

Protecting the body from pathogens typically involves a multitude of responses after actual contact. An anticipatory biological immune reaction to an infection had not been previously demonstrated.

Tiny artificial cells maintain 24-hour cycles like living organisms

A team of UC Merced researchers has shown that tiny artificial cells can accurately keep time, mimicking the daily rhythms found in living organisms. Their findings shed light on how biological clocks stay on schedule despite the inherent molecular noise inside cells.

The study, published in Nature Communications, was led by bioengineering Professor Anand Bala Subramaniam and chemistry and biochemistry Professor Andy LiWang. The first author, Alexander Zhang Tu Li, earned his Ph.D. in Subramaniam’s lab.

Biological clocks—also known as —govern 24-hour cycles that regulate sleep, metabolism and other vital processes. To explore the mechanisms behind the circadian rhythms of cyanobacteria, the researchers reconstructed the clockwork in simplified, cell-like structures called vesicles. These vesicles were loaded with core clock proteins, one of which was tagged with a fluorescent marker.

Bacteria-based sensors deliver real-time detection of arsenite and cadmium in water

Researchers at Rice University have engineered E. coli to act as living multiplexed sensors, allowing these genetically modified cells to detect and respond to multiple environmental toxins simultaneously by converting their biological responses into readable electrical signals. This innovation opens the door to real-time, remote monitoring of water systems, pipelines and industrial sites with potential future applications in biocomputing.

A new study published in Nature Communications demonstrates an innovative method for the real-time, on-site detection of arsenite and cadmium at levels set by the Environmental Protection Agency.

This research, led by Xu Zhang, Marimikel Charrier and Caroline Ajo-Franklin, addresses a significant inefficiency in current bioelectronic sensors, which typically require dedicated communication channels for each target compound. The research team’s multiplexing strategy greatly enhances information throughput by leveraging bacteria’s innate sensitivity and adaptability within a self-powered platform.

New microscope creates 3D ghost images of nanoparticles using entangled photons

Ghost imaging is like a game of Battleship. Instead of seeing an object directly, scientists use entangled photons to remove the background and reveal its silhouette. This method can be used to study microscopic environments without much light, which is helpful for avoiding photodamage to biological samples.

Deep-sea fish confirmed as a significant source of ocean carbonate

A new study offers the first direct evidence that deep-dwelling mesopelagic fish, which account for up to 94% of global fish biomass, excrete carbonate minerals at rates comparable to shallow-water species. The findings validate previous global models suggesting that marine fish are major contributors to biogenic carbonate production in the ocean.

Scientists at the University of Miami Rosenstiel School of Marine, Atmospheric, and Earth Science studied the blackbelly rosefish (Helicolenus dactylopterus), a deep-sea species living at depths of 350–430 meters (1,148–1,410 feet), to determine whether it forms and excretes intestinal carbonate—known as ichthyocarbonate. This physiological process, common among marine fish, helps maintain internal salt and water balance in saline environments and plays a critical role in marine carbon cycling.

The study, titled “Osmoregulation by the gastro-intestinal tract of at depth—implications for the global carbon cycle,” was published on July 15, 2025 in the Journal of Experimental Biology.

Scientists create an artificial cell capable of navigating its environment using chemistry alone

Researchers at the Institute for Bioengineering of Catalonia (IBEC) have created the world’s simplest artificial cell capable of chemical navigation, migrating toward specific substances like living cells do.

This breakthrough, published in Science Advances, demonstrates how microscopic bubbles can be programmed to follow chemical trails. The study describes the development of a “minimal cell” in the form of a lipid encapsulating enzymes that can propel itself through chemotaxis.

Cellular transport is a vital aspect of many biological processes and a key milestone in evolution. Among all types of movement, chemotaxis is an essential strategy used by many living systems to move towards beneficial signals, such as nutrients, or away from harmful ones.

Neutron beam platform unites simulation and biology for advanced therapy research

One of ANSTO’s advanced imaging instruments Dingo now delivers a rare fusion of simulation and radiobiology, becoming a launchpad for an innovative neutron therapy innovation.

This unique scientific capability comprises a single research platform for high-fidelity simulation, real-time dosimetry, and biological response data—all from a neutron beam instrument.

Two new papers published in Scientific Reports report how ANSTO researchers have adapted neutron tomography into a fully integrated testbed for neutron capture therapy research. The platform allows scientists to model conditions, plan experiments, and irradiate , all within a validated, operational system.

/* */