Blog

Archive for the ‘biological’ category: Page 27

Jan 29, 2024

1.6-billion-year-old Fossils Push Back Origin of Multicellular Life by Tens of Millions of Years

Posted by in category: biological

The study shows that analyzing ancient organisms can help unravel the evolutionary history of life on Earth, Craig said.

“Positively identifying any fossil over a billion years old is inherently challenging. For example, the oldest dinosaur fossils are only about 250 million years old, and the ones in this study are almost seven times older,” he said. “That’s why research such as this is exceptionally difficult, but highly rewarding, and when conclusions such as the ones in this study can be reached with high confidence, it represents a significant discovery.”

Jan 28, 2024

Biohybrid robot makes sharp rotations with lab-grown muscles

Posted by in categories: biological, robotics/AI

Compared to robots, human bodies are flexible, capable of fine movements, and can convert energy efficiently into movement. Drawing inspiration from human gait, researchers from Japan crafted a two-legged biohybrid robot by combining muscle tissues and artificial materials. Publishing on January 26 in the journal Matter, this method allows the robot to walk and pivot.

Research on biohybrid robots, which are a fusion of biology and mechanics, is recently attracting attention as a new field of robotics featuring biological function. Using muscle as actuators allows us to build a compact robot and achieve efficient, silent movements with a soft touch.

Jan 28, 2024

Quantum Breakthrough: Unveiling the Mysteries of Electron Tunneling

Posted by in categories: biological, chemistry, computing, quantum physics

Tunneling is a fundamental process in quantum mechanics, involving the ability of a wave packet to cross an energy barrier that would be impossible to overcome by classical means. At the atomic level, this tunneling phenomenon significantly influences molecular biology. It aids in speeding up enzyme reactions, causes spontaneous DNA mutations, and initiates the sequences of events that lead to the sense of smell.

Photoelectron tunneling is a key process in light-induced chemical reactions, charge and energy transfer, and radiation emission. The size of optoelectronic chips and other devices has been close to the sub-nanometer atomic scale, and the quantum tunneling effects between different channels would be significantly enhanced.

Jan 28, 2024

On computational models of theory of mind and the imitative reinforcement learning in spiking neural networks

Posted by in categories: biological, robotics/AI

Gorgan Mohammadi, A., Ganjtabesh, M. Sci Rep 14, 1945 (2024). https://doi.org/10.1038/s41598-024-52299-7

Download citation.

Jan 26, 2024

Scientists design a two-legged robot powered by muscle tissue

Posted by in categories: biological, robotics/AI

Compared to robots, human bodies are flexible, capable of fine movements, and can convert energy efficiently into movement. Drawing inspiration from human gait, researchers from Japan crafted a two-legged biohybrid robot by combining muscle tissues and artificial materials. Published on January 26 in the journal Matter, this method allows the robot to walk and pivot.

“Research on biohybrid robots, which are a fusion of biology and mechanics, is recently attracting attention as a new field of robotics featuring ,” says corresponding author Shoji Takeuchi of the University of Tokyo, Japan. “Using muscle as actuators allows us to build a compact and achieve efficient, silent movements with a soft touch.”

Continue reading “Scientists design a two-legged robot powered by muscle tissue” »

Jan 26, 2024

New Fuel Cell Harvests Energy from Microbes in Soil to Power Sensors, Communications

Posted by in categories: biological, chemistry, food, sustainability

A Northwestern University-led team of researchers has developed a new fuel cell that harvests energy from microbes living in dirt.

About the size of a standard paperback book, the completely soil-powered technology could fuel underground sensors used in precision agriculture and green infrastructure. This potentially could offer a sustainable, renewable alternative to batteries, which hold toxic, flammable chemicals that leach into the ground, are fraught with conflict-filled supply chains and contribute to the ever-growing problem of electronic waste.

To test the new fuel cell, the researchers used it to power sensors measuring soil moisture and detecting touch, a capability that could be valuable for tracking passing animals. To enable wireless communications, the researchers also equipped the soil-powered sensor with a tiny antenna to transmit data to a neighboring base station by reflecting existing radio frequency signals.

Jan 25, 2024

Emergence of periodic circumferential actin cables from the anisotropic fusion of actin nanoclusters during tubulogenesis

Posted by in category: biological

Periodic circumferential cytoskeletons support biological tube formation. Here, the authors show that self-assembled actin nanoclusters undergo biased fusion and develop into periodic cables in response to the membrane anisotropy of the expanding Drosophila tracheal tube.

Jan 24, 2024

Study offers new insights into understanding and controlling tunneling dynamics in complex molecules

Posted by in categories: biological, chemistry, computing, quantum physics

Tunneling is one of most fundamental processes in quantum mechanics, where the wave packet could traverse a classically insurmountable energy barrier with a certain probability.

On the , effects play an important role in , such as accelerating enzyme catalysis, prompting spontaneous mutations in DNA and triggering olfactory signaling cascades.

Photoelectron tunneling is a key process in light-induced , charge and energy transfer and radiation emission. The size of optoelectronic chips and other devices has been close to the sub-nanometer atomic scale, and the quantum tunneling effects between different channels would be significantly enhanced.

Jan 24, 2024

Leveling Up in Life Sciences: Unleashing the Power of Computational Biology with Wolfram Language

Posted by in categories: biological, computing

Explore life sciences with Wolfram Language Demonstrations, Function Repository, Q&As, Community posts and more, at any skill level. Research computational biology and find your computational X.

Jan 24, 2024

Complex green organisms emerged a billion years ago, says new research

Posted by in categories: biological, habitats

Of all the organisms that photosynthesize, land plants have the most complex bodies. How did this morphology emerge? A team of scientists led by the University of Göttingen has taken a deep dive into the evolutionary history of morphological complexity in streptophytes, which include land plants and many green algae.

The team’s research allowed them to go back in time to investigate lineages that emerged long before land plants existed. Their results revise the understanding of the relationships of a group of filamentous algal land colonizers much older than land plants. Using modern gene sequencing data, researchers pinpoint the emergence of multicellularity to almost a billion years ago. The results were published in the journal Current Biology.

The study focused on Klebsormidiophyceae, a class of known for its ability to colonize diverse habitats worldwide. The team of researchers conducted extensive sampling, investigating habitats ranging from streams, rivers, and lake shores to bogs, soil, natural rocks, , acidic post-mining sites, , urban walls, and building façades.

Page 27 of 217First2425262728293031Last